A284017 Square root of the smallest square referenced in A038109 (Divisible exactly by the square of a prime).
2, 3, 2, 3, 2, 5, 2, 2, 2, 3, 7, 5, 2, 2, 3, 2, 3, 5, 2, 2, 3, 2, 7, 3, 2, 2, 2, 3, 11, 2, 3, 2, 2, 3, 7, 2, 5, 3, 2, 2, 13, 3, 2, 5, 2, 2, 2, 3, 5, 2, 3, 2, 2, 3, 2, 3, 2, 11, 2, 7, 2, 2, 3, 2, 5, 2, 3, 2, 3, 17, 2, 7, 2, 3, 2, 3, 2, 2, 5, 2, 3, 13, 2, 3, 2
Offset: 1
Keywords
Examples
A038109(3)=12, 12 = 2*2*3, so 12 is divisible by the square of 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to use the members of A038109 <= N P:= select(isprime, [$1..floor(sqrt(N))]): S:= {}: for p in P do Ks:= select(t -> t mod p <> 0, {$1..floor(N/p^2)}); R:= map(`*`,Ks,p^2) minus S; for r in R do B[r]:= p od: S:= S union R; od: A038109:= sort(convert(S,list)): seq(B[A038109[i]], i=1..nops(A038109)); # Robert Israel, Mar 28 2017
-
Mathematica
s[n_] := If[(pos = Position[(f = FactorInteger[n])[[;; , 2]], 2]) == {}, 1, f[[pos[[1, 1]], 1]]]; Select[Array[s, 300], # > 1 &] (* Amiram Eldar, Nov 14 2020 *)
Formula
a(n) = sqrt(A284018(n)). - Amiram Eldar, Nov 14 2020
Extensions
Corrected by Robert Israel, Mar 28 2017
Comments