A045943 Triangular matchstick numbers: a(n) = 3*n*(n+1)/2.
0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198, 234, 273, 315, 360, 408, 459, 513, 570, 630, 693, 759, 828, 900, 975, 1053, 1134, 1218, 1305, 1395, 1488, 1584, 1683, 1785, 1890, 1998, 2109, 2223, 2340, 2460, 2583, 2709, 2838, 2970, 3105, 3243, 3384, 3528
Offset: 0
Examples
From _Stephen Balaban_, Jul 25 2011: (Start) T(n), the triangular numbers = number of nodes, a(n-1) = number of edges in the T(n) graph: o (T(1) = 1, a(0) = 0) o / \ (T(2) = 3, a(1) = 3) o - o o / \ o - o (T(3) = 6, a(2) = 9) / \ / \ o - o - o ... [Corrected by _N. J. A. Sloane_, Aug 01 2024] (End)
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 543.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Abderrahim Arabi, Hacène Belbachir, and Jean-Philippe Dubernard, Enumeration of parallelogram polycubes, arXiv:2105.00971 [cs.DM], 2021.
- Francesco Brenti and Paolo Sentinelli, Wachs permutations, Bruhat order and weak order, arXiv:2212.04932 [math.CO], 2022.
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 29.
- T. Aaron Gulliver, Sums of Powers of Integers Divisible by Three, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 38, 1895 - 1901.
- Alfred Hoehn, Illustration of initial terms of A000326, A005449, A045943, A115067
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- E. Lábos, On the number of RGB-colors we can distinguish. Partition Spectra. Lecture at 7th Hungarian Conference on Biometry and Biomathematics. Budapest. Jul 06, 2005. Applied Ecology and Environmental Research 4(2): 159-169, 2006.
- R. J. Mathar, Lozenge tilings of the equilateral triangle, arXiv:1909.06336 [math.CO], 2019.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
3 times n-gonal numbers: A033428, A062741, A094159, A152773, A152751, A152759, A152767, A153783, A153448, A153875.
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
A diagonal of A010027.
Orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A115067, A008585, A005843, A001477, A000217.
Cf. A027480 (partial sums).
Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
This sequence: Sum_{k = n..2*n} k.
Cf. A304993: Sum_{k = n..2*n} k*(k+1)/2.
Cf. A050409: Sum_{k = n..2*n} k^2.
Similar sequences are listed in A316466.
Programs
-
GAP
List([0..10^4], n -> 3*n*(n+1)/2); # Muniru A Asiru, Jan 24 2018
-
Haskell
a n = sum [x | x <- [n..2*n]] -- Peter Kagey, Jul 27 2015
-
Magma
[3*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, May 02 2011
-
Maple
seq(3*binomial(n+1,2), n=0..49); # Zerinvary Lajos, Nov 24 2006
-
Mathematica
Table[3 n (n + 1)/2, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Oct 31 2008 *) 3 Accumulate@Range[0, 48] (* Arkadiusz Wesolowski, Oct 29 2012 *) CoefficientList[Series[-3 x/(x - 1)^3, {x, 0, 47}], x] (* Robert G. Wilson v, Jan 29 2015 *) LinearRecurrence[{3, -3, 1}, {0, 3, 9}, 50] (* Jean-François Alcover, Dec 12 2016 *)
-
PARI
a(n)=3*binomial(n+1,2) \\ Charles R Greathouse IV, Jun 16 2011
-
Scala
(3 to 150 by 3).scanLeft(0)( + ) // Alonso del Arte, Sep 12 2019
Formula
a(n) is the sum of n+1 integers starting from n, i.e., 1+2, 2+3+4, 3+4+5+6, 4+5+6+7+8, etc. - Jon Perry, Jan 15 2004
a(n) = A126890(n+1,n-1) for n>1. - Reinhard Zumkeller, Dec 30 2006
a(n) + A145919(3*n+3) = 0. - Matthew Vandermast, Oct 28 2008
a(n) = a(n-1)+3*n, n>0. - Vincenzo Librandi, Nov 18 2010
G.f.: 3*x/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = A005448(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2. - Wesley Ivan Hurt, Nov 24 2015
2*a(n)+1 = A003215(n). - Miquel Cerda, Jan 22 2018
a(n) = T(2*n) - T(n-1), where T(n) = A000217(n). In general, T(k)*T(n) = Sum_{i=0..k-1} (-1)^i*T((k-i)*(n-i)). - Charlie Marion, Dec 06 2020
E.g.f.: 3*exp(x)*x*(2 + x)/2. - Stefano Spezia, May 19 2021
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/3. (End)
Product_{n>=1} (1 - 1/a(n)) = -(3/(2*Pi))*cos(sqrt(11/3)*Pi/2). - Amiram Eldar, Feb 21 2023
Comments