cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A047470 Numbers that are congruent to {0, 3} mod 8.

Original entry on oeis.org

0, 3, 8, 11, 16, 19, 24, 27, 32, 35, 40, 43, 48, 51, 56, 59, 64, 67, 72, 75, 80, 83, 88, 91, 96, 99, 104, 107, 112, 115, 120, 123, 128, 131, 136, 139, 144, 147, 152, 155, 160, 163, 168, 171, 176, 179, 184, 187, 192, 195, 200, 203, 208, 211, 216, 219, 224, 227, 232
Offset: 1

Views

Author

Keywords

Comments

Maximum number of squares attacked by a queen on an n X n chessboard. - Stewart Gordon, Mar 23 2001
Equivalently, maximum vertex degree in the n X n queen graph. - Eric W. Weisstein, Jun 20 2017
Number of squares attacked by a queen on a toroidal chessboard. - Diego Torres (torresvillarroel(AT)hotmail.com), May 19 2001
List of squared distances between points of diamond 'lattice' with minimal distance sqrt(3). - Arnold Neumaier (Arnold.Neumaier(AT)univie.ac.at), Aug 01 2003
Draw a figure-eight knot diagram on the plane and assign a list of nonnegative numbers at each crossing as follows. Start with 0 and choose a crossing on the knot. Pick a direction and walk around the knot, appending the following nonnegative number everytime a crossing is visited. Two series of sequences are obtained: this sequence, A047535, A047452, A047617 and A047615, A047461, A047452, A047398 (see example). - Franck Maminirina Ramaharo, Jul 22 2018

Examples

			From _Franck Maminirina Ramaharo_, Jul 22 2018: (Start)
Consider the following equivalent figure-eight knot diagrams:
+---------------------+           +-----------------n
|                     |           |                 |
|           +---------B-----+     |           w-----A---e
|           |         |     |     |           |     |   |
|     n-----C---+     |     |     |           |     |   |
|     |     |   |     |     | <=> |   +-------B-----s   |
|     |     +---D-----+     |     |   |       |         |
|     |         |           |     |   |       |         |
w-----A---------e           |     +---C-------D---------+
      |                     |         |       |
      s---------------------+         +-------+
Uppercases A,B,C,D denote crossings, and lowercases n,s,w,e denote directions. Due to symmetry and ambient isotopy, all possible sequences are obtained by starting from crossing A and choose either direction 'n' or 's'.
Direction 'n':
A: 0, 3,  8, 11, 16, 19, 24, 27, 32, 35, 40, ... (this sequence);
B: 4, 7, 12, 15, 20, 23, 28, 31, 36, 39, 44, ... A047535;
C: 1, 6,  9, 14, 17, 22, 25, 30, 33, 38, 41, ... A047452;
D: 2, 5, 10, 13, 18, 21, 26, 29, 34, 37, 42, ... A047617.
Direction 's':
A: 0, 5,  8, 13, 16, 21, 24, 29, 32, 37, 40, ... A047615;
B: 1, 4,  9, 12, 17, 20, 25, 28, 33, 36, 41, ... A047461;
C: 2, 7, 10, 15, 18, 23, 26, 31, 34, 39, 42, ... A047524;
D: 3, 6, 11, 14, 19, 22, 27, 30, 35, 38, 43, ... A047398.
(End)
		

Crossrefs

Programs

  • GAP
    a:=[0,3,8];; for n in [4..50] do a[n]:=a[n-1]+a[n-2]-a[n-3]; od; a; # Muniru A Asiru, Jul 23 2018
    
  • Maple
    a:=n->add(4+(-1)^j,j=1..n):seq(a(n),n=0..64); # Zerinvary Lajos, Dec 13 2008
  • Mathematica
    With[{c = 8 Range[0, 30]}, Sort[Join[c, c + 3]]] (* Harvey P. Dale, Oct 11 2011 *)
    Table[(8 n - 9 - (-1)^n)/2, {n, 20}] (* Eric W. Weisstein, Jun 20 2017 *)
    LinearRecurrence[{1, 1, -1}, {0, 3, 8}, 20] (* Eric W. Weisstein, Jun 20 2017 *)
    CoefficientList[Series[(x (3 + 5 x))/((-1 + x)^2 (1 + x)), {x, 0, 20}], x]  (* Eric W. Weisstein, Jun 20 2017 *)
  • PARI
    forstep(n=0,200,[3,5],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • Python
    def A047470(n): return (n-1<<2)-(n&1^1) # Chai Wah Wu, Mar 30 2024

Formula

a(n) = a(n-1) + 4 + (-1)^n.
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = A042948(n) + A005843(n).
G.f.: (3x+5*x^2)/((1-x)*(1-x^2)).
a(n) = 8*n - a(n-1) - 13 (with a(1)=0). - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*A171497(k). - Philippe Deléham, Oct 17 2011
a(n) = 4*n -(9 + (-1)^n)/2. - Arkadiusz Wesolowski, Sep 18 2012
E.g.f: (10 - exp(-x) + (8*x - 9)*exp(x))/2. - Franck Maminirina Ramaharo, Jul 22 2018
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/16 + log(2)/2 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A047452 Numbers that are congruent to {1, 6} mod 8.

Original entry on oeis.org

1, 6, 9, 14, 17, 22, 25, 30, 33, 38, 41, 46, 49, 54, 57, 62, 65, 70, 73, 78, 81, 86, 89, 94, 97, 102, 105, 110, 113, 118, 121, 126, 129, 134, 137, 142, 145, 150, 153, 158, 161, 166, 169, 174, 177, 182, 185, 190
Offset: 1

Views

Author

Keywords

Comments

Except for 1, numbers whose binary reflected Gray code (A014550) ends with 01. - Amiram Eldar, May 17 2021

Crossrefs

Programs

  • GAP
    Filtered([0..250], n->n mod 8=1 or n mod 8=6); # Muniru A Asiru, Jul 24 2018
    
  • Maple
    seq(coeff(series(factorial(n)*((4+exp(-x)+(8*x-5)*exp(x))/2), x,n+1),x,n),n=1..60); # Muniru A Asiru, Jul 24 2018
  • Mathematica
    Table[(8 n - 5 + (-1)^n)/2, {n, 1, 100}] (* Franck Maminirina Ramaharo, Jul 23 2018 *)
    CoefficientList[ Series[(2x^2 + 5x + 1)/((x - 1)^2 (x + 1)), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 6, 9}, 51] (* Robert G. Wilson v, Jul 24 2018 *)
  • Maxima
    makelist((8*n - 5 + (-1)^n)/2, n, 1, 100); /* Franck Maminirina Ramaharo, Jul 23 2018 */
    
  • Python
    def A047452(n): return (n<<2)-2-(n&1) # Chai Wah Wu, Mar 30 2024

Formula

G.f.: x*(1+5*x+2*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
E.g.f.: (4 + exp(-x) + (8*x - 5)*exp(x))/2. - Ilya Gutkovskiy, May 25 2016
a(n) = A047615(n) + 1. - Franck Maminirina Ramaharo, Jul 23 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+2)*Pi/16 + log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021

A047617 Numbers that are congruent to {2, 5} mod 8.

Original entry on oeis.org

2, 5, 10, 13, 18, 21, 26, 29, 34, 37, 42, 45, 50, 53, 58, 61, 66, 69, 74, 77, 82, 85, 90, 93, 98, 101, 106, 109, 114, 117, 122, 125, 130, 133, 138, 141, 146, 149, 154, 157, 162, 165, 170, 173, 178, 181, 186, 189, 194, 197, 202, 205, 210, 213, 218, 221, 226, 229, 234
Offset: 1

Views

Author

Keywords

Comments

Numbers whose binary reflected Gray code (A014550) ends with 11. - Amiram Eldar, May 17 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[300],MemberQ[{2,5},Mod[#,8]]&] (* or *) LinearRecurrence[ {1,1,-1},{2,5,10},80] (* Harvey P. Dale, Feb 23 2016 *)
  • Maxima
    makelist(4*n -(5 + (-1)^n)/2, n, 1, 100); /* Franck Maminirina Ramaharo, Jul 22 2018 */
    
  • Python
    def A047617(n): return (n-1<<2)+1+(n&1) # Chai Wah Wu, Mar 30 2024

Formula

a(n) = 8*n - a(n-1) - 9 (with a(1)=2). - Vincenzo Librandi, Aug 06 2010
a(n) = 4*n - (5 + (-1)^n)/2. - Arkadiusz Wesolowski, Sep 18 2012
G.f.: (2+3*x+3*x^2)/((-1+x)^2*(1+x)). - Harvey P. Dale, Feb 23 2016
a(1)=2, a(2)=5, a(3)=10, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Feb 23 2016
From Franck Maminirina Ramaharo, Jul 22 2018: (Start)
a(n) = A047470(n) + 2.
E.g.f.: (6 - exp(-x) + (8*x - 5)*exp(x))/2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/16 - log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A047524 Numbers that are congruent to {2, 7} mod 8.

Original entry on oeis.org

2, 7, 10, 15, 18, 23, 26, 31, 34, 39, 42, 47, 50, 55, 58, 63, 66, 71, 74, 79, 82, 87, 90, 95, 98, 103, 106, 111, 114, 119, 122, 127, 130, 135, 138, 143, 146, 151, 154, 159, 162, 167, 170, 175, 178, 183, 186, 191, 194, 199, 202, 207, 210, 215, 218, 223, 226, 231, 234
Offset: 1

Views

Author

Keywords

Comments

A195605 is a subsequence. - Bruno Berselli, Sep 21 2011

Crossrefs

Programs

  • GAP
    Filtered([0..250],n->n mod 8=2 or n mod 8=7); # Muniru A Asiru, Aug 06 2018
    
  • Maple
    seq(coeff(series(x*(2+5*x+x^2)/((1+x)*(1-x)^2), x,n+1),x,n),n=1..60); # Muniru A Asiru, Aug 06 2018
  • Mathematica
    Select[Range[300],MemberQ[{2,7},Mod[#,8]]&] (* or *)
    LinearRecurrence[ {1,1,-1},{2,7,10},60] (* Harvey P. Dale, Nov 05 2017 *)
    CoefficientList[ Series[(x^2 + 5x + 2)/((x - 1)^2 (x + 1)), {x, 0, 60}], x] (* Robert G. Wilson v, Aug 07 2018 *)
  • Maxima
    makelist(4*n - mod(n,2) - 1, n, 1, 100); /* Franck Maminirina Ramaharo, Aug 06 2018 */
    
  • PARI
    is(n) = #setintersect([n%8], [2, 7]) > 0 \\ Felix Fröhlich, Aug 06 2018
    
  • Python
    def A047524(n): return (n<<2)-1-(n&1) # Chai Wah Wu, Mar 30 2024

Formula

a(n) = 8*n - a(n-1) - 7, n > 1. - Vincenzo Librandi, Aug 06 2010
From R. J. Mathar, Mar 22 2011: (Start)
a(n) = 4*n - 3/2 + (-1)^n/2.
G.f.: x*(2+5*x+x^2) / ( (1+x)*(x-1)^2 ). (End)
From Franck Maminirina Ramaharo, Aug 06 2018: (Start)
a(n) = 4*n - (n mod 2) - 1.
a(n) = A047615(n) + 2.
a(2*n) = A004771(n-1).
a(2*n-1) = A017089(n-1).
E.g.f.: ((8*x - 3)*exp(x) + exp(-x) + 2)/2. (End)
a(n) = a(n-1) + a(n-2) - a(n-3). - Muniru A Asiru, Aug 06 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+2)*Pi/16 - log(2)/8 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A047535 Numbers that are congruent to {4, 7} mod 8.

Original entry on oeis.org

4, 7, 12, 15, 20, 23, 28, 31, 36, 39, 44, 47, 52, 55, 60, 63, 68, 71, 76, 79, 84, 87, 92, 95, 100, 103, 108, 111, 116, 119, 124, 127, 132, 135, 140, 143, 148, 151, 156, 159, 164, 167, 172, 175, 180, 183, 188, 191, 196, 199, 204, 207, 212, 215, 220, 223, 228, 231
Offset: 1

Views

Author

Keywords

Comments

Union of A004771 and A017113.

Crossrefs

Programs

Formula

a(n) = 8*n - a(n-1) - 5 (with a(1)=4). - Vincenzo Librandi, Aug 06 2010
a(n) = 4*n -(1 + (-1)^n)/2. - Arkadiusz Wesolowski, Sep 18 2012
G.f.: x*(4+3*x+x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Jul 10 2015
From Franck Maminirina Ramaharo, Jul 22 2018: (Start)
a(n) = A047470(n) + 4.
E.g.f.: (2 - exp(-x) + (8*x - 1)*exp(x))/2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 - log(2)/4 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021

A047398 Numbers that are congruent to {3, 6} mod 8.

Original entry on oeis.org

3, 6, 11, 14, 19, 22, 27, 30, 35, 38, 43, 46, 51, 54, 59, 62, 67, 70, 75, 78, 83, 86, 91, 94, 99, 102, 107, 110, 115, 118, 123, 126, 131, 134, 139, 142, 147, 150, 155, 158, 163, 166, 171, 174, 179, 182, 187, 190, 195, 198, 203, 206, 211, 214, 219, 222, 227, 230
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 8*n - a(n-1) - 7, n > 1. - Vincenzo Librandi, Aug 05 2010
From R. J. Mathar, Dec 05 2011: (Start)
a(n) = 4*n - (3 + (-1)^n)/2.
G.f.: x*(3+3*x+2*x^2) / ( (1+x)*(x-1)^2 ). (End)
From Franck Maminirina Ramaharo, Aug 06 2018: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3), n > 3.
a(n) = 4*n + (n mod 2) - 2.
a(n) = A047470(n) + 3.
a(2*n) = A017137(n-1).
a(2*n-1) = A017101(n-1).
E.g.f.: ((8*x - 3)*exp(x) - exp(-x) + 4)/2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/16 + log(2)/8 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021

A047615 Numbers that are congruent to {0, 5} mod 8.

Original entry on oeis.org

0, 5, 8, 13, 16, 21, 24, 29, 32, 37, 40, 45, 48, 53, 56, 61, 64, 69, 72, 77, 80, 85, 88, 93, 96, 101, 104, 109, 112, 117, 120, 125, 128, 133, 136, 141, 144, 149, 152, 157, 160, 165, 168, 173, 176, 181, 184, 189, 192, 197, 200, 205, 208, 213, 216, 221, 224, 229, 232
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Filtered([0..250], n->n mod 8=0 or n mod 8=5); # Muniru A Asiru, Jul 23 2018
    
  • Magma
    [(8*n - 7 + (-1)^n)/2 : n in [1..50]]; // Wesley Ivan Hurt, Mar 26 2015
    
  • Maple
    a:=n->add(4-(-1)^j, j=1..n): seq(a(n), n=0..59); # Zerinvary Lajos, Dec 13 2008
  • Mathematica
    Table[(8 n - 7 + (-1)^n)/2, {n, 1, 40}] (* Wesley Ivan Hurt, Mar 26 2015 *)
    Rest@ CoefficientList[Series[x^2*(5 + 3 x)/((1 - x)^2*(1 + x)), {x, 0, 59}], x] (* Michael De Vlieger, Aug 25 2016 *)
    Rest@(Range[0, 60]! CoefficientList[ Series[(6 + Exp[-x] + (8 x - 7)*Exp[x])/2, {x, 0, 60}], x]) (* or *)
    LinearRecurrence[{1, 1, -1}, {0, 5, 8}, 60] (* Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    forstep(n=0,200,[5,3],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • PARI
    concat(0, Vec(x^2*(5+3*x)/((1-x)^2*(1+x)) + O(x^100))) \\ Colin Barker, Aug 25 2016
    
  • Python
    def A047615(n): return (n<<2)-3-(n&1) # Chai Wah Wu, Mar 30 2024

Formula

a(n) = 8*n-a(n-1)-11 (with a(1)=0). - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=5 and b(k)=2^(k+2) for k>0. - Philippe Deléham, Oct 17 2011
From Wesley Ivan Hurt, Mar 26 2015: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = (8n - 7 + (-1)^n)/2. (End)
G.f.: x^2*(5+3*x) / ((1-x)^2*(1+x)). - Colin Barker, Aug 25 2016
From Franck Maminirina Ramaharo, Jul 23 2018: (Start)
a(n) = A047470(n) - (-1)^(n - 1) + 1.
E.g.f.: (6 + exp(-x) + (8*x - 7)*exp(x))/2. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2)/2 - (sqrt(2)-1)*Pi/16 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A376732 Triangle read by rows: T(n,k) is the maximum number of squares covered (i.e., attacked) by k independent (i.e., non-attacking) queens on an n X n chessboard.

Original entry on oeis.org

1, 4, 0, 9, 9, 0, 12, 15, 16, 16, 17, 23, 25, 25, 25, 20, 30, 35, 36, 36, 36, 25, 37, 45, 49, 49, 49, 49, 28, 44, 55, 62, 64, 64, 64, 64, 33, 52, 66, 76, 81, 81, 81, 81, 81, 36, 60, 77, 92, 100, 100, 100, 100, 100, 100, 41, 68, 88, 104, 121, 121, 121, 121, 121, 121, 121
Offset: 1

Views

Author

John King, Oct 03 2024

Keywords

Comments

T(2,2) = T(3,3) = 0 indicate that there are no solutions to the n-queens problem when n is 2 or 3.

Examples

			Triangle begins:
  n\k|  1    2    3    4    5    6    7    8    9   10   11   12
 ----+-----------------------------------------------------------
   1 |  1;
   2 |  4,   0;
   3 |  9,   9,   0;
   4 | 12,  15,  16,  16;
   5 | 17,  23,  25,  25,  25;
   6 | 20,  30,  35,  36,  36,  36;
   7 | 25,  37,  45,  49,  49,  49,  49;
   8 | 28,  44,  55,  62,  64,  64,  64,  64;
   9 | 33,  52,  66,  76,  81,  81,  81,  81,  81;
  10 | 36,  60,  77,  92, 100, 100, 100, 100, 100, 100;
  11 | 41,  68,  88, 104, 121, 121, 121, 121, 121, 121, 121;
  12 | 44,  76, 101, 120, 134, 142, 144, 144, 144, 144, 144, 144;
  13 | 49,  84, 112, 136, 153, 165, 169, 169, 169, 169, 169, ...;
  14 | 52,  92, 125, 152, 172, 186, 194, 196, 196, 196, 196, ...;
  15 | 57, 100, 136, 168, 193, 209, 221, 224, 225, 225, 225, ...;
  16 | 60, 108, 149, 184, 212, 231, 242, 251, 256, 256, 256, ...;
  17 | 65, 116, 160, 200, 233, 255, 269, 281, 289, 289, 289, ...;
  18 | 68, 124, 173, 216, 252, 277, 294, 310, 322, 324, 324, ...;
  ...
		

Crossrefs

Formula

T(n,k) = n^2 for k >= A075324(n), n >= 4.

Extensions

Initial terms by John King and Mia Müßig added by Mia Muessig, Oct 05 2024

A374933 Maximum number of squares covered (i.e., attacked) by 2 independent (i.e., non-attacking) queens on an n X n chessboard.

Original entry on oeis.org

9, 15, 23, 30, 37, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404, 412, 420
Offset: 3

Views

Author

John King, Jul 24 2024

Keywords

Comments

It is not possible to place two non-attacking queens on a 1 X 1 or 2 X 2 chessboard.

Crossrefs

Cf. A017113, A047461 (case for one queen).

Formula

a(n) = 8*n - 20 for n >= 8.
G.f.: x^3*(9 - 3*x + 2*x^2 - x^3 + x^6)/(1 - x)^2. - Stefano Spezia, Jul 25 2024

A374934 Maximum number of squares covered (i.e., attacked) by 4 independent (i.e., nonattacking) queens on an n X n chessboard.

Original entry on oeis.org

16, 25, 36, 49, 62, 76, 92, 104, 120, 136, 152, 168, 184, 200, 216
Offset: 4

Views

Author

John King, Aug 08 2024

Keywords

Examples

			4 X 4:
  x Q x x
  x x x Q
  Q x x x
  x x Q x
5 X 5 there are several arrangements:
  x Q x x x
  x x x x x
  x x x x Q
  Q x x x x
  x x x Q x
6 X 6 and 7 X 7 (add a row and column) pattern as 4 queens knight-1,3 and 1,4 separation (not symmetric):
  . . . . . . .
  x x x x Q x .
  Q x x x x x .
  x x x x x x .
  x x x x x Q .
  x Q x x x x .
8 X 8: queens all knight-1,4 apart;
8 X 8 has 2 o/s;
9 X 9 has 5 o/s;
10 X 10 has 8 o/s;
  o x x x x x x x x o
  x o x x x x x x o x
  x x x Q x x x x x x
  x x x x x x x Q x x
  x x x x x x x x x x
  x x x x x x x x x x
  x x Q x x x x x x x
  x x x x x x Q x x x
  x o x x x x x x o x
  o x x x x x x x x o
beyond 10 X 10, the 4 queens separated as 1,2 knights begins to be the best layout; at 15 X 15, the pattern is clear.
  o x x o o x x x x o o x x o x
  x o x x o x x x x o x x o x x
  x x o x x x x x x x x o x x o
  o x x o x x x x x x o x x o o
  o o x x o x x x x o x x o o o
  x x x x x x Q x x x x x x x x
  x x x x x x x x Q x x x x x x
  x x x x x Q x x x x x x x x x
  x x x x x x x Q x x x x x x x
  o o x x o x x x x o x x o o o
  o x x o x x x x x x o x x o o
  x x o x x x x x x x x o x x o
  x o x x o x x x x o x x o x x
  o x x o o x x x x o o x x o x
  x x o o o x x x x o o o x x o
		

Crossrefs

Extensions

a(18) added using data from Mia Muessig by Andrew Howroyd, Oct 05 2024
Showing 1-10 of 27 results. Next