cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001065 Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106
Offset: 1

Views

Author

Keywords

Comments

Also total number of parts in all partitions of n into equal parts that do not contain 1 as a part. - Omar E. Pol, Jan 16 2013
Related concepts: If a(n) < n, n is said to be deficient, if a(n) > n, n is abundant, and if a(n) = n, n is perfect. If there is a cycle of length 2, so that a(n) = b and a(b) = n, b and n are said to be amicable. If there is a longer cycle, the numbers in the cycle are said to be sociable. See examples. - Juhani Heino, Jul 17 2017
Sum of the smallest parts in the partitions of n into two parts such that the smallest part divides the largest. - Wesley Ivan Hurt, Dec 22 2017
a(n) is also the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that do not contain k as a part (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 23 2019
Fixed points are in A000396. - Alois P. Heinz, Mar 10 2024

Examples

			x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 7*x^8 + 4*x^9 + 8*x^10 + x^11 + ...
For n = 44, sum of divisors of n = sigma(n) = 84; so a(44) = 84-44 = 40.
Related concepts: (Start)
From 1 to 17, all n are deficient, except 6 and 12 seen below. See A005100.
Abundant numbers: a(12) = 16, a(18) = 21. See A005101.
Perfect numbers: a(6) = 6, a(28) = 28. See A000396.
Amicable numbers: a(220) = 284, a(284) = 220. See A259180.
Sociable numbers: 12496 -> 14288 -> 15472 -> 14536 -> 14264 -> 12496. See A122726. (End)
For n = 10 the sum of the divisors of 10 that are less than 10 is 1 + 2 + 5 = 8. On the other hand, the partitions of 10 into equal parts that do not contain 1 as a part are [10], [5,5], [2,2,2,2,2], there are 8 parts, so a(10) = 8. - _Omar E. Pol_, Nov 24 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • George E. Andrews, Number Theory. New York: Dover, 1994; Pages 1, 75-92; p. 92 #15: Sigma(n) / d(n) >= n^(1/2).
  • Carl Pomerance, The first function and its iterates, pp. 125-138 in Connections in Discrete Mathematics, ed. S. Butler et al., Cambridge, 2018.
  • H. J. J. te Riele, Perfect numbers and aliquot sequences, pp. 77-94 in J. van de Lune, ed., Studieweek "Getaltheorie en Computers", published by Math. Centrum, Amsterdam, Sept. 1980.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.

Crossrefs

Least inverse: A070015, A359132.
Values taken: A078923, values not taken: A005114.
Records: A034090, A034091.
First differences: A053246, partial sums: A153485.
a(n) = n - A033879(n) = n + A033880(n). - Omar E. Pol, Dec 30 2013
Row sums of A141846 and of A176891. - Gary W. Adamson, May 02 2010
Row sums of A176079. - Mats Granvik, May 20 2012
Alternating row sums of A231347. - Omar E. Pol, Jan 02 2014
a(n) = sum (A027751(n,k): k = 1..A000005(n)-1). - Reinhard Zumkeller, Apr 05 2013
For n > 1: a(n) = A240698(n,A000005(n)-1). - Reinhard Zumkeller, Apr 10 2014
A134675(n) = A007434(n) + a(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
Cf. A037020 (primes), A053868, A053869 (odd and even terms).
Cf. A048138 (number of occurrences), A238895, A238896 (record values thereof).
Cf. A007956 (products of proper divisors).
Cf. A005100, A005101, A000396, A259180, A122726 (related concepts).

Programs

  • Haskell
    a001065 n = a000203 n - n  -- Reinhard Zumkeller, Sep 15 2011
    
  • Magma
    [SumOfDivisors(n)-n: n in [1..100]]; // Vincenzo Librandi, May 06 2015
    
  • Maple
    A001065 := proc(n)
        numtheory[sigma](n)-n ;
    end proc:
    seq( A001065(n),n=1..100) ;
  • Mathematica
    Table[ Plus @@ Select[ Divisors[ n ], #Zak Seidov, Sep 10 2009 *)
    Table[DivisorSigma[1, n] - n, {n, 1, 80}] (* Jean-François Alcover, Apr 25 2013 *)
    Array[Plus @@ Most@ Divisors@# &, 80] (* Robert G. Wilson v, Dec 24 2017 *)
  • MuPAD
    numlib::sigma(n)-n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, sigma(n) - n)} /* Michael Somos, Sep 20 2011 */
    
  • Python
    from sympy import divisor_sigma
    def A001065(n): return divisor_sigma(n)-n # Chai Wah Wu, Nov 04 2022
    
  • Sage
    [sigma(n, 1)-n for n in range(1, 81)] # Stefano Spezia, Jul 14 2025

Formula

G.f.: Sum_{k>0} k * x^(2*k)/(1 - x^k). - Michael Somos, Jul 05 2006
a(n) = sigma(n) - n = A000203(n) - n. - Lekraj Beedassy, Jun 02 2005
a(n) = A155085(-n). - Michael Somos, Sep 20 2011
Equals inverse Mobius transform of A051953 = A051731 * A051953. Example: a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (0, 1, 1, 2, 1, 4) = (0 + 1 + 1 + 0 + 0 + 4), where A051953 = (0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, ...) and (1, 1, 1, 0, 0, 1) = row 6 of A051731 where the 1's positions indicate the factors of 6. - Gary W. Adamson, Jul 11 2008
a(n) = A006128(n) - A220477(n) - n. - Omar E. Pol Jan 17 2013
a(n) = Sum_{i=1..floor(n/2)} i*(1-ceiling(frac(n/i))). - Wesley Ivan Hurt, Oct 25 2013
Dirichlet g.f.: zeta(s-1)*(zeta(s) - 1). - Ilya Gutkovskiy, Aug 07 2016
a(n) = 1 + A048050(n), n > 1. - R. J. Mathar, Mar 13 2018
Erdős (Elem. Math. 28 (1973), 83-86) shows that the density of even integers in the range of a(n) is strictly less than 1/2. The argument of Coppersmith (1987) shows that the range of a(n) has density at most 47/48 < 1. - N. J. A. Sloane, Dec 21 2019
G.f.: Sum_{k >= 2} x^k/(1 - x^k)^2. Cf. A296955. (This follows from the fact that if g(z) = Sum_{n >= 1} a(n)*z^n and f(z) = Sum_{n >= 1} a(n)*z^(N*n)/(1 - z^n) then f(z) = Sum_{k >= N} g(z^k), taking a(n) = n and N = 2.) - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+1))*(n*q^(3*n+2) - (n + 1)*q^(2*n+1) - (n - 1)*q^(n+1) + n)/((1 - q^n)*(1 - q^(n+1))^2). (In equation 1 in Arndt, after combining the two n = 0 summands to get -t/(1 - t), apply the operator t*d/dt to the resulting equation and then set t = q and x = 1.) - Peter Bala, Jan 22 2021
a(n) = Sum_{d|n} d * (1 - [n = d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
a(n) = Sum_{i=1..n} ((n-1) mod i) - (n mod i). [See also A176079.] - José de Jesús Camacho Medina, Feb 23 2021

A037020 Numbers whose sum of proper (or aliquot) divisors is a prime.

Original entry on oeis.org

4, 8, 21, 27, 32, 35, 39, 50, 55, 57, 63, 65, 77, 85, 98, 111, 115, 125, 128, 129, 155, 161, 171, 175, 185, 187, 189, 201, 203, 205, 209, 221, 235, 237, 242, 245, 265, 275, 279, 291, 299, 305, 309, 319, 323, 324, 325, 327, 335, 338, 341, 365, 371, 377, 381
Offset: 1

Views

Author

Felice Russo, Dec 11 1999

Keywords

Comments

Assuming the Goldbach conjecture, it is easy to show that all primes, except 2 and 5, are the sum of the proper divisors of some number. - T. D. Noe, Nov 29 2006

Examples

			The aliquot divisors of 27 are 1, 3, and 9, whose sum is 13, a prime, so 27 is a term.
		

Crossrefs

Programs

  • Haskell
    a037020 n = a037020_list !! (n-1)
    a037020_list = filter ((== 1) . a010051' . a001065) [1..]
    -- Reinhard Zumkeller, Nov 01 2015, Sep 15 2011
    
  • Magma
    [n: n in [2..500] | IsPrime(SumOfDivisors(n)-n)]; // Vincenzo Librandi, Nov 01 2016
  • Mathematica
    Select[Range[400],PrimeQ[DivisorSigma[1,#]-#]&] (* Harvey P. Dale, May 09 2011 *)
  • PARI
    isok(n) = isprime(sigma(n) - n); \\ Michel Marcus, Nov 01 2016
    

Formula

A001065(a(n)) is in A000040.
Pollack proves that a(n) >> n log n. - Charles R Greathouse IV, Jun 28 2021

A053868 Numbers whose sum of proper divisors is odd.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 27, 29, 31, 32, 33, 35, 36, 37, 39, 41, 43, 45, 47, 50, 51, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 72, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 98, 99, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119
Offset: 1

Views

Author

Henry Bottomley, Mar 29 2000

Keywords

Comments

Numbers which are twice squares, even squares or odd nonsquares.

Crossrefs

Programs

  • Haskell
    a053868 n = a053868_list !! (n-1)
    a053868_list = filter (odd . a001065) [1..]
    -- Reinhard Zumkeller, Nov 01 2015, Sep 15 2011

Extensions

Improved name from Omar E. Pol, Aug 14 2009

A274918 Numbers n such that the sum of numbers less than n that do not divide n is odd.

Original entry on oeis.org

4, 5, 6, 8, 10, 13, 14, 16, 17, 21, 22, 26, 29, 30, 32, 33, 34, 36, 37, 38, 41, 42, 45, 46, 53, 54, 57, 58, 61, 62, 64, 65, 66, 69, 70, 72, 73, 74, 77, 78, 82, 85, 86, 89, 90, 93, 94, 97, 100, 101, 102, 105, 106, 109, 110, 113, 114, 117, 118, 122, 125, 126, 128, 129, 130, 133, 134, 137, 138, 141, 142, 144, 145, 146, 149, 150
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 10 2016

Keywords

Comments

Numbers n such that A000035(A024816(n)) = 1 or A000035(A000217(n)-A000203(n)) = 1.
There are 2 cases when n belongs to this sequence: 1) if n congruent to 0 or 3 mod 4 (A014601) and n is square or twice square (A028982); 2) if n congruent to 1 or 2 mod 4 (A042963) and n is not square and is not twice square (A028983).

Examples

			6 is in the sequence because 6 has 4 divisors {1,2,3,6} therefore 2 non-divisors {4,5}, 4 + 5 = 9 and 9 is odd.
		

Crossrefs

Programs

  • Maple
    filter:= n -> evalb(n+1 mod 4 <= 1) = (issqr(n) or issqr(n/2)):
    select(filter, [$1..200]); # Robert Israel, Dec 11 2016
  • Mathematica
    Select[Range[150], Mod[#1 ((#1 + 1)/2) - DivisorSigma[1, #1], 2] == 1 & ]
    Select[Range[150],OddQ[Total[Complement[Range[#],Divisors[#]]]]&] (* Harvey P. Dale, Jul 29 2024 *)

A279064 Numbers n such that the sum of numbers less than n that do not divide n is even.

Original entry on oeis.org

1, 2, 3, 7, 9, 11, 12, 15, 18, 19, 20, 23, 24, 25, 27, 28, 31, 35, 39, 40, 43, 44, 47, 48, 49, 50, 51, 52, 55, 56, 59, 60, 63, 67, 68, 71, 75, 76, 79, 80, 81, 83, 84, 87, 88, 91, 92, 95, 96, 98, 99, 103, 104, 107, 108, 111, 112, 115, 116, 119, 120, 121, 123, 124, 127, 131
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 10 2016

Keywords

Comments

Numbers n such that A000035(A024816(n)) = 0 or A000035(A000217(n)-A000203(n)) = 0.
There are 2 cases when n belongs to this sequence: 1) if n congruent to 0 or 3 mod 4 (A014601) and n is not square and is not twice square (A028983); 2) if n congruent to 1 or 2 mod 4 (A042963) and n is square or twice square (A028982).

Examples

			12 is in the sequence because 12 has 6 divisors {1,2,3,4,6,12} therefore 6 non-divisors {5,7,8,9,10,11}, 5 + 7 + 8 + 9 + 10 + 11 = 50 and 50 is even.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[150], Mod[#1 ((#1 + 1)/2) - DivisorSigma[1, #1], 2] == 0 & ]
    Select[Range[150],EvenQ[(#(#+1))/2-DivisorSigma[1,#]]&] (* Harvey P. Dale, Oct 21 2018 *)
  • PARI
    isok(n) = (sum(k=1, n-1, k*((n % k) != 0)) % 2) == 0; \\ Michel Marcus, Dec 11 2016
Showing 1-5 of 5 results.