cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A048291 Number of {0,1} n X n matrices with no zero rows or columns.

Original entry on oeis.org

1, 1, 7, 265, 41503, 24997921, 57366997447, 505874809287625, 17343602252913832063, 2334958727565749108488321, 1243237913592275536716800402887, 2630119877024657776969635243647463625, 22170632855360952977731028744522744983195423
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Number of relations on n labeled points such that for every point x there exists y and z such that xRy and zRx.
Also the number of edge covers in the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Apr 24 2017
Counts labeled digraphs (loops allowed, no multiarcs) on n nodes where each indegree and each outdegree is >= 1. The corresponding sequence for unlabeled digraphs (1, 5, 55, 1918,... for n >= 1) seems not to be in the OEIS. - R. J. Mathar, Nov 21 2023
These relations form a subsemigroup of the semigroup of all binary relations on [n]. The zero element is the universal relation (all 1's matrix). See Schwarz link. - Geoffrey Critzer, Jan 15 2024

Examples

			a(2) = 7:  |01|  |01|  |10|  |10|  |11|  |11|  |11|
           |10|  |11|  |01|  |11|  |01|  |10|  |11|.
		

References

  • Brendan McKay, Posting to sci.math.research, Jun 14 1999.

Crossrefs

Cf. A055601, A055599, A104601, A086193 (traceless, no loops), A086206, A322661 (adj. matr. undirected edges).
Diagonal of A183109.

Programs

  • Maple
    seq(add((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n), n=0..15); # Robert FERREOL, Mar 10 2017
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n,k]*(-1)^k*(2^(n-k)-1)^n,{k,0,n}],{n,1,15}]}] (* Vaclav Kotesovec, Jul 02 2014 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*(-1)^k*(2^(n-k)-1)^n)
    
  • Python
    import math
    f = math.factorial
    def A048291(n): return sum([(f(n)/f(s)/f(n - s))*(-1)**s*(2**(n - s) - 1)**n for s in range(0, n+1)]) # Indranil Ghosh, Mar 14 2017

Formula

a(n) = Sum_{s=0..n} binomial(n, s)*(-1)^s*2^((n-s)*n)*(1-2^(-n+s))^n.
From Vladeta Jovovic, Feb 23 2008: (Start)
E.g.f.: Sum_{n>=0} (2^n-1)^n*exp((1-2^n)*x)*x^n/n!.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j)*binomial(n,i)*binomial(n,j)*2^(i*j). (End)
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jul 02 2014
a(n) = Sum_{s=0..n-1} binomial(n,s)*(-1)^s*A092477(n,n-s), n > 0. - R. J. Mathar, Nov 18 2023

A136516 a(n) = (2^n+1)^n.

Original entry on oeis.org

1, 3, 25, 729, 83521, 39135393, 75418890625, 594467302491009, 19031147999601100801, 2460686496619787545743873, 1280084544196357822418212890625, 2672769719437237714909813214827010049, 22366167213460480200139104627873703828439041
Offset: 0

Views

Author

Paul D. Hanna, Jan 02 2008

Keywords

Comments

More generally, Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n / n! = Sum_{n>=0} (m*q^n + b)^n * x^n / n! for all q, m, b.
Main diagonal of A264871. - Omar E. Pol, Nov 27 2015

Examples

			A(x) = 1 + 3x + 5^2*x^2/2! + 9^3*x^3/3! + 17^4*x^4/4! +... + (2^n+1)^n*x^n/n! +...
A(x) = exp(x) + 2*exp(2x) + 2^4*exp(4x)*x^2/2! + 2^9*exp(8x)*x^3/3! +...+ 2^(n^2)*exp(2^n*x)*x^n/n! +...
This is a special case of the more general statement:
Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! = Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) where F(x) = exp(x), q=2, m=1, b=1.
		

Crossrefs

Programs

  • Magma
    [(2^n+1)^n: n in [0..45]]; // Vincenzo Librandi, Apr 21 2011
  • Maple
    seq((2^n+1)^n, n=0..30); # Robert Israel, Nov 27 2015
  • Mathematica
    Table[(2^n+1)^n,{n,0,16}] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*)
  • PARI
    a(n)=polcoeff(sum(k=0,n,2^(k^2)*exp(2^k*x)*x^k/k!),n)
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, 2^(k^2)*x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Sep 15 2009
    

Formula

E.g.f.: A(x) = Sum_{n>=0} 2^(n^2) * exp(2^n*x) * x^n/n!.
O.g.f.: Sum_{n>=0} 2^(n^2)*x^n/(1 - 2^n*x)^(n+1) = Sum_{n>=0} (2^n+1)^n*x^n. [Paul D. Hanna, Sep 15 2009]
a(n) = 2^(n^2) + n 2^(n^2-n) + O(n^2 2^(n^2-2n)). - Robert Israel, Nov 27 2015

A092477 Triangle read by rows: T(n,k) = (2^k - 1)^n, 1<=k<=n.

Original entry on oeis.org

1, 1, 9, 1, 27, 343, 1, 81, 2401, 50625, 1, 243, 16807, 759375, 28629151, 1, 729, 117649, 11390625, 887503681, 62523502209, 1, 2187, 823543, 170859375, 27512614111, 3938980639167, 532875860165503, 1, 6561, 5764801, 2562890625, 852891037441, 248155780267521, 67675234241018881, 17878103347812890625
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 26 2004

Keywords

Comments

T(n,1)=1; T(n,2)=A000244(n); T(n,n-1)=A086206(n); T(n,n)=A055601(n).
T(n,k) is the number of n X k binary matrices with no 0 rows. The triangular array becomes a rectangular array by lifting the restriction on k. [From Geoffrey Critzer, Dec 03 2009]
From Manfred Boergens, Jun 23 2024: (Start)
T(n,k) is the number of coverings of [n] by tuples (A_1,...,A_k) in P([n])^k, with P(.) denoting the power set.
For nonempty A_j see A218695.
For disjoint A_j see A089072.
For nonempty and disjoint A_j see A019538.
Lifting the restriction on k and swapping n,k gives A329943. (End)

Examples

			Triangle begins
 1
 1,9;
 1,27,343;
 1,81,2401,50625;
 1,243,16807,759375, 28629151 [_Geoffrey Critzer_, Dec 03 2009]
		

Crossrefs

Programs

  • Maple
    A092477 := proc(n,k)
        (2^k-1)^n ;
    end proc:
    seq(seq( A092477(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Nov 18 2023
  • Mathematica
    Table[Table[(2^k - 1)^n, {k, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, Dec 03 2009 *)

Extensions

More terms from Michel Marcus, Jun 23 2024

A060613 Number of n X n {-1,0,1} matrices with no zero rows.

Original entry on oeis.org

2, 64, 17576, 40960000, 829997587232, 148863517207035904, 238534446168822298080896, 3429499272008000182681600000000, 443223773846454955204927262062339154432
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001

Keywords

Crossrefs

Programs

  • PARI
    a(n)={(3^n - 1)^n} \\ Harry J. Smith, Jul 08 2009
    
  • PARI
    {a(n, q=3, m=1, b=-1)=(m*q^n + b)^n} \\ Paul D. Hanna, Dec 26 2011
    
  • PARI
    /* E.g.f. series identity: */
    {a(n, q=3, m=1, b=-1)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)} \\ Paul D. Hanna, Dec 26 2011
    
  • PARI
    /* O.g.f. series identity: */
    {a(n, q=3, m=1, b=-1)=polcoeff(sum(k=0, n, m^k*q^(k^2)*x^k/(1-b*q^k*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Dec 26 2011

Formula

a(n) = (3^n - 1)^n.
E.g.f.: Sum_{n>=0} 3^(n^2) * exp(-3^n*x) * x^n/n!. - Paul D. Hanna, Dec 26 2011
O.g.f.: Sum_{n>=0} 3^(n^2) * x^n/(1+3^n*x)^(n+1). - Paul D. Hanna, Dec 26 2011

Extensions

More terms from Harry J. Smith, Jul 08 2009

A155202 G.f.: A(x) = exp( Sum_{n>=1} (2^n - 1)^n * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 5, 119, 12783, 5739069, 10426379903, 76135573607705, 2234839096465512877, 263966776643953756165279, 125532809982533901346598445525, 240383033223427436734891985275952307
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 119*x^3 + 12783*x^4 + 5739069*x^5 +...
log(A(x)) = x + 3^2*x^2/2 + 7^3*x^3/3 + 15^4*x^4/4 + 31^5*x^5/5 +...
		

Crossrefs

Cf. A055601, A155200, A155202, A155810 (triangle), variants: A155205, A155209.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,(2^m-1)^m*x^m/m)+x*O(x^n)),n)}

A165327 E.g.f: Sum_{n>=0} 2^(n(n-1)) * exp(2^n*x) * x^n/n!.

Original entry on oeis.org

1, 2, 9, 125, 6561, 1419857, 1291467969, 4902227890625, 76686282021340161, 4891005035897482905857, 1262332172765951010966606849, 1312086657801266767978668212890625
Offset: 0

Views

Author

Paul D. Hanna, Sep 15 2009

Keywords

Comments

More generally, Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n/n! = Sum_{n>=0} (m*q^n + b)^n * x^n/n! for all q, m, b.

Examples

			E.g.f: A(x) = 1 + 2*x + 3^2*x^2/2! + 5^3*x^3/3! + 9^4*x^4/4! +...
A(x) = exp(x) + exp(2x)*x + 2^2*exp(4x)*x^2/2! + 2^6*exp(8x)*x^3/3! +...
This is a special case of the more general statement:
Sum_{n>=0} m^n * F(q^n*x)^b * log(F(q^n*x) )^n / n! = Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) where F(x) = exp(x), q=2, m=1/2, b=1.
		

Crossrefs

Cf. variants: A136516, A055601, A079491.

Programs

  • PARI
    {a(n,q=2,m=1/2,b=1)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}

Formula

a(n) = (2^(n-1) + 1)^n.

A180602 a(n) = (2^(n+1) - 1)^n.

Original entry on oeis.org

1, 3, 49, 3375, 923521, 992436543, 4195872914689, 70110209207109375, 4649081944211090042881, 1227102111503512992112190463, 1291749870339606615892191271170049, 5429914198235566686555216227881787109375
Offset: 0

Views

Author

Paul D. Hanna, Sep 11 2010

Keywords

Comments

More generally, we have the following identities:
(1) Sum_{n>=0} m^n* F(q^n*x)^b* log( F(q^n*x) )^n/n! = Sum_{n>=0} x^n* [y^n] F(y)^(m*q^n + b);
(2) Sum_{n>=0} m^n* q^(n^2)* exp(b*q^n*x)*x^n/n! = Sum_{n>=0} (m*q^n + b)^n*x^n/n! for all q, m, b.
This sequence results from (2) when q=2, m=2, b=-1.
For n >= 2, a(n) is the first number in a set of three powerful numbers in arithmetic progression with difference a(n)*(2^n - 1). - Arkadiusz Wesolowski, Aug 26 2013

Examples

			E.g.f: A(x) = 1 + 3*x + 7^2*x^2/2! + 15^3*x^3/3! + 31^4*x^4/4! +...
A(x) = exp(-x) + 2^2*exp(-2*x)*x + 2^6*exp(-4*x)*x^2/2! + 2^12*exp(-8*x)*x^3/3! +...
		

Crossrefs

Cf. A086459 (signed, offset 1), variants: A055601, A079491, A136516, A165327.
Cf. A001694.

Programs

  • Magma
    [(2^(n+1)-1)^n : n in [0..11]]; // Arkadiusz Wesolowski, Aug 26 2013
    
  • Maple
    A180602:=n->(2^(n+1) - 1)^n: seq(A180602(n), n=0..10); # Wesley Ivan Hurt, Oct 09 2014
  • Mathematica
    Table[(2^(n + 1) - 1)^n, {n, 0, 10}] (* Wesley Ivan Hurt, Oct 09 2014 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, 2^(k^2+k)*exp(-2^k*x+x*O(x^n))*x^k/k!), n)}
    
  • Python
    def A180602(n): return ((1<Chai Wah Wu, Sep 13 2024

Formula

E.g.f.: Sum_{n>=0} 2^(n^2+n) * exp(-2^n*x) * x^n/n!.

Extensions

Name changed by Arkadiusz Wesolowski, Aug 26 2013

A086206 Number of n X n matrices with entries in {0,1} with no zero row and with zero main diagonal.

Original entry on oeis.org

0, 1, 27, 2401, 759375, 887503681, 3938980639167, 67675234241018881, 4558916353692287109375, 1213972926354344043087129601, 1284197945649659948122178573052927, 5412701932445852698371002894178179850241, 91054366938067173656011584805755385081787109375
Offset: 1

Views

Author

Vladeta Jovovic, Aug 27 2003

Keywords

Comments

Equivalently a(n) is the number of labeled digraphs on [n] with no out-nodes. Cf. A362013. - Geoffrey Critzer, Apr 13 2023

Crossrefs

Programs

Formula

a(n) = (2^(n-1)-1)^n = Sum_{k=0..n} (-1)^k*binomial(n, k)*2^((n-k)*(n-1)).
a(n) = A092477(n, n-1).
Sum_{n>=0} a(n)*x^n/A011266(n) = (Sum_{n>=0} (-x)^n/A011266(n))*(Sum_{n>=0} 2^(n(n-1))*x^n/A011266(n)). - Geoffrey Critzer, Apr 13 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 05 2020

A116506 Number of singular n X n rational {0,1}-matrices with no zero rows.

Original entry on oeis.org

0, 3, 169, 28065, 16114831, 33686890209, 262530190180063, 7717643584470877185
Offset: 1

Views

Author

Vladeta Jovovic, Apr 03 2006

Keywords

Crossrefs

Formula

a(n) = A055601(n) - A055165(n).

A329943 Square array read by antidiagonals: T(n,k) is the number of right total relations between set A with n elements and set B with k elements.

Original entry on oeis.org

1, 3, 1, 7, 9, 1, 15, 49, 27, 1, 31, 225, 343, 81, 1, 63, 961, 3375, 2401, 243, 1, 127, 3969, 29791, 50625, 16807, 729, 1, 255, 16129, 250047, 923521, 759375, 117649, 2187, 1, 511, 65025, 2048383, 15752961, 28629151, 11390625, 823543, 6561, 1
Offset: 1

Views

Author

Roy S. Freedman, Nov 24 2019

Keywords

Comments

A relation R between set A with n elements and set B with k elements is a subset of the Cartesian product A x B. A relation R is right total if for each b in B there exists an a in A such that (a,b) in R. T(n,k) is the number of right total relations and T(k,n) is the number of left total relations: relation R is left total if for each a in A there exists a b in B such that (a,b) in R.
From Manfred Boergens, Jun 23 2024: (Start)
T(n,k) is the number of k X n binary matrices with no 0 rows.
T(n,k) is the number of coverings of [k] by tuples (A_1,...,A_n) in P([k])^n, with P(.) denoting the power set.
Swapping n,k gives A092477 (with k<=n).
For nonempty A_j see A218695 (n,k swapped).
For disjoint A_j see A089072 (n,k swapped).
For nonempty and disjoint A_j see A019538 (n,k swapped). (End)

Examples

			T(n,k) begins, for 1 <= n,k <= 9:
    1,     1,       1,         1,           1,             1,               1
    3,     9,      27,        81,         243,           729,            2187
    7,    49,     343,      2401,       16807,        117649,          823543
   15,   225,    3375,     50625,      759375,      11390625,       170859375
   31,   961,   29791,    923521,    28629151,     887503681,     27512614111
   63,  3969,  250047,  15752961,   992436543,   62523502209,   3938980639167
  127, 16129, 2048383, 260144641, 33038369407, 4195872914689, 532875860165503
		

Crossrefs

Cf. A218695.
The diagonal T(n,n) is A055601.
A092477 = T(k,n) is the number of left total relations between A and B.
A053440 is the number of relations that are both right unique (see A329940) and right total.
A089072 is the number of functions from A to B: relations between A and B that are both right unique and left total.
A019538 is the number of surjections between A and B: relations that are right unique, right total, and left total.
A008279 is the number of injections: relations that are right unique, left total, and left unique.
A000142 is the number of bijections: relations that are right unique, left total, right total, and left unique.

Programs

  • Maple
    rt:=(n,k)->(2^n-1)^k:
  • Mathematica
    T[n_, k_] := (2^n - 1)^k; Table[T[n - k + 1, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
  • MuPAD
    rt:=(n,k)->(2^n-1)^k:

Formula

T(n,k) = (2^n - 1)^k.
Showing 1-10 of 22 results. Next