A048291
Number of {0,1} n X n matrices with no zero rows or columns.
Original entry on oeis.org
1, 1, 7, 265, 41503, 24997921, 57366997447, 505874809287625, 17343602252913832063, 2334958727565749108488321, 1243237913592275536716800402887, 2630119877024657776969635243647463625, 22170632855360952977731028744522744983195423
Offset: 0
Joe Keane (jgk(AT)jgk.org)
a(2) = 7: |01| |01| |10| |10| |11| |11| |11|
|10| |11| |01| |11| |01| |10| |11|.
- Brendan McKay, Posting to sci.math.research, Jun 14 1999.
- T. D. Noe, Table of n, a(n) for n = 0..32
- H. Cheballah, S. Giraudo, and R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
- David Dolžan and Gabriel Verret, The automorphism group of the zero-divisor digraph of matrices over an antiring, arXiv:1908.04614 [math.AC], 2019.
- R. J. Mathar, The number of nXm matrices with at most k 1's in each row or column, (2014).
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Stefan Schwarz, The semigroup of fully indecomposable relations and Hall relations, Czechoslovak Mathematical Journal, 23 (1973), 151-163.
- R. Tauraso, Edge cover time for regular graphs, JIS 11 (2008) 08.4.4.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Edge Cover.
-
seq(add((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n), n=0..15); # Robert FERREOL, Mar 10 2017
-
Flatten[{1,Table[Sum[Binomial[n,k]*(-1)^k*(2^(n-k)-1)^n,{k,0,n}],{n,1,15}]}] (* Vaclav Kotesovec, Jul 02 2014 *)
-
a(n)=sum(k=0,n,binomial(n,k)*(-1)^k*(2^(n-k)-1)^n)
-
import math
f = math.factorial
def A048291(n): return sum([(f(n)/f(s)/f(n - s))*(-1)**s*(2**(n - s) - 1)**n for s in range(0, n+1)]) # Indranil Ghosh, Mar 14 2017
A136516
a(n) = (2^n+1)^n.
Original entry on oeis.org
1, 3, 25, 729, 83521, 39135393, 75418890625, 594467302491009, 19031147999601100801, 2460686496619787545743873, 1280084544196357822418212890625, 2672769719437237714909813214827010049, 22366167213460480200139104627873703828439041
Offset: 0
A(x) = 1 + 3x + 5^2*x^2/2! + 9^3*x^3/3! + 17^4*x^4/4! +... + (2^n+1)^n*x^n/n! +...
A(x) = exp(x) + 2*exp(2x) + 2^4*exp(4x)*x^2/2! + 2^9*exp(8x)*x^3/3! +...+ 2^(n^2)*exp(2^n*x)*x^n/n! +...
This is a special case of the more general statement:
Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! = Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) where F(x) = exp(x), q=2, m=1, b=1.
-
[(2^n+1)^n: n in [0..45]]; // Vincenzo Librandi, Apr 21 2011
-
seq((2^n+1)^n, n=0..30); # Robert Israel, Nov 27 2015
-
Table[(2^n+1)^n,{n,0,16}] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*)
-
a(n)=polcoeff(sum(k=0,n,2^(k^2)*exp(2^k*x)*x^k/k!),n)
-
{a(n)=polcoeff(sum(k=0, n, 2^(k^2)*x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Sep 15 2009
A092477
Triangle read by rows: T(n,k) = (2^k - 1)^n, 1<=k<=n.
Original entry on oeis.org
1, 1, 9, 1, 27, 343, 1, 81, 2401, 50625, 1, 243, 16807, 759375, 28629151, 1, 729, 117649, 11390625, 887503681, 62523502209, 1, 2187, 823543, 170859375, 27512614111, 3938980639167, 532875860165503, 1, 6561, 5764801, 2562890625, 852891037441, 248155780267521, 67675234241018881, 17878103347812890625
Offset: 1
Triangle begins
1
1,9;
1,27,343;
1,81,2401,50625;
1,243,16807,759375, 28629151 [_Geoffrey Critzer_, Dec 03 2009]
-
A092477 := proc(n,k)
(2^k-1)^n ;
end proc:
seq(seq( A092477(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Nov 18 2023
-
Table[Table[(2^k - 1)^n, {k, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, Dec 03 2009 *)
A060613
Number of n X n {-1,0,1} matrices with no zero rows.
Original entry on oeis.org
2, 64, 17576, 40960000, 829997587232, 148863517207035904, 238534446168822298080896, 3429499272008000182681600000000, 443223773846454955204927262062339154432
Offset: 1
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
-
a(n)={(3^n - 1)^n} \\ Harry J. Smith, Jul 08 2009
-
{a(n, q=3, m=1, b=-1)=(m*q^n + b)^n} \\ Paul D. Hanna, Dec 26 2011
-
/* E.g.f. series identity: */
{a(n, q=3, m=1, b=-1)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)} \\ Paul D. Hanna, Dec 26 2011
-
/* O.g.f. series identity: */
{a(n, q=3, m=1, b=-1)=polcoeff(sum(k=0, n, m^k*q^(k^2)*x^k/(1-b*q^k*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Dec 26 2011
A155202
G.f.: A(x) = exp( Sum_{n>=1} (2^n - 1)^n * x^n/n ), a power series in x with integer coefficients.
Original entry on oeis.org
1, 1, 5, 119, 12783, 5739069, 10426379903, 76135573607705, 2234839096465512877, 263966776643953756165279, 125532809982533901346598445525, 240383033223427436734891985275952307
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 119*x^3 + 12783*x^4 + 5739069*x^5 +...
log(A(x)) = x + 3^2*x^2/2 + 7^3*x^3/3 + 15^4*x^4/4 + 31^5*x^5/5 +...
A165327
E.g.f: Sum_{n>=0} 2^(n(n-1)) * exp(2^n*x) * x^n/n!.
Original entry on oeis.org
1, 2, 9, 125, 6561, 1419857, 1291467969, 4902227890625, 76686282021340161, 4891005035897482905857, 1262332172765951010966606849, 1312086657801266767978668212890625
Offset: 0
E.g.f: A(x) = 1 + 2*x + 3^2*x^2/2! + 5^3*x^3/3! + 9^4*x^4/4! +...
A(x) = exp(x) + exp(2x)*x + 2^2*exp(4x)*x^2/2! + 2^6*exp(8x)*x^3/3! +...
This is a special case of the more general statement:
Sum_{n>=0} m^n * F(q^n*x)^b * log(F(q^n*x) )^n / n! = Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) where F(x) = exp(x), q=2, m=1/2, b=1.
-
{a(n,q=2,m=1/2,b=1)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}
A180602
a(n) = (2^(n+1) - 1)^n.
Original entry on oeis.org
1, 3, 49, 3375, 923521, 992436543, 4195872914689, 70110209207109375, 4649081944211090042881, 1227102111503512992112190463, 1291749870339606615892191271170049, 5429914198235566686555216227881787109375
Offset: 0
E.g.f: A(x) = 1 + 3*x + 7^2*x^2/2! + 15^3*x^3/3! + 31^4*x^4/4! +...
A(x) = exp(-x) + 2^2*exp(-2*x)*x + 2^6*exp(-4*x)*x^2/2! + 2^12*exp(-8*x)*x^3/3! +...
-
[(2^(n+1)-1)^n : n in [0..11]]; // Arkadiusz Wesolowski, Aug 26 2013
-
A180602:=n->(2^(n+1) - 1)^n: seq(A180602(n), n=0..10); # Wesley Ivan Hurt, Oct 09 2014
-
Table[(2^(n + 1) - 1)^n, {n, 0, 10}] (* Wesley Ivan Hurt, Oct 09 2014 *)
-
{a(n)=n!*polcoeff(sum(k=0, n, 2^(k^2+k)*exp(-2^k*x+x*O(x^n))*x^k/k!), n)}
-
def A180602(n): return ((1<Chai Wah Wu, Sep 13 2024
A086206
Number of n X n matrices with entries in {0,1} with no zero row and with zero main diagonal.
Original entry on oeis.org
0, 1, 27, 2401, 759375, 887503681, 3938980639167, 67675234241018881, 4558916353692287109375, 1213972926354344043087129601, 1284197945649659948122178573052927, 5412701932445852698371002894178179850241, 91054366938067173656011584805755385081787109375
Offset: 1
A116506
Number of singular n X n rational {0,1}-matrices with no zero rows.
Original entry on oeis.org
0, 3, 169, 28065, 16114831, 33686890209, 262530190180063, 7717643584470877185
Offset: 1
A329943
Square array read by antidiagonals: T(n,k) is the number of right total relations between set A with n elements and set B with k elements.
Original entry on oeis.org
1, 3, 1, 7, 9, 1, 15, 49, 27, 1, 31, 225, 343, 81, 1, 63, 961, 3375, 2401, 243, 1, 127, 3969, 29791, 50625, 16807, 729, 1, 255, 16129, 250047, 923521, 759375, 117649, 2187, 1, 511, 65025, 2048383, 15752961, 28629151, 11390625, 823543, 6561, 1
Offset: 1
T(n,k) begins, for 1 <= n,k <= 9:
1, 1, 1, 1, 1, 1, 1
3, 9, 27, 81, 243, 729, 2187
7, 49, 343, 2401, 16807, 117649, 823543
15, 225, 3375, 50625, 759375, 11390625, 170859375
31, 961, 29791, 923521, 28629151, 887503681, 27512614111
63, 3969, 250047, 15752961, 992436543, 62523502209, 3938980639167
127, 16129, 2048383, 260144641, 33038369407, 4195872914689, 532875860165503
A092477 = T(k,n) is the number of left total relations between A and B.
A053440 is the number of relations that are both right unique (see
A329940) and right total.
A089072 is the number of functions from A to B: relations between A and B that are both right unique and left total.
A019538 is the number of surjections between A and B: relations that are right unique, right total, and left total.
A008279 is the number of injections: relations that are right unique, left total, and left unique.
A000142 is the number of bijections: relations that are right unique, left total, right total, and left unique.
-
rt:=(n,k)->(2^n-1)^k:
-
T[n_, k_] := (2^n - 1)^k; Table[T[n - k + 1, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
-
rt:=(n,k)->(2^n-1)^k:
Showing 1-10 of 22 results.
Comments