cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A331633 Distinct values of A055944 in order of their appearance as n grows.

Original entry on oeis.org

0, 2, 3, 6, 5, 10, 9, 14, 18, 15, 24, 21, 30, 17, 34, 27, 44, 25, 42, 35, 52, 37, 54, 45, 62, 33, 66, 51, 84, 78, 63, 96, 57, 90, 75, 108, 69, 102, 81, 114, 93, 126, 65, 130, 99, 164, 85, 150, 119, 184, 146, 115, 180, 101, 166, 135, 200, 105, 170, 139, 204
Offset: 1

Views

Author

Rémy Sigrist, Jan 23 2020

Keywords

Examples

			A055944 starts: 0, 2, 3, 6, 5, 10, 9, 14, 9, 18, 15, 24, 15, 24, 21, 30, 17, ...
We keep:        0, 2, 3, 6, 5, 10, 9, 14,    18, 15, 24,         21, 30, 17, ...
		

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Array[# + IntegerReverse[#, 2] &, 100, 0]] (* Paolo Xausa, Apr 28 2025 *)
  • PARI
    s=0; for (n=0, 87, v=n+fromdigits(Vecrev(binary(n)),2); if (!bittest(s, v), print1 (v ", "); s+=2^v))

A030101 a(n) is the number produced when n is converted to binary digits, the binary digits are reversed and then converted back into a decimal number.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 13, 3, 11, 7, 15, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 1, 33, 17, 49, 9, 41, 25, 57, 5, 37, 21, 53, 13, 45, 29, 61, 3, 35, 19, 51, 11, 43, 27, 59, 7, 39, 23, 55, 15, 47, 31, 63, 1, 65, 33, 97, 17, 81, 49, 113, 9, 73, 41, 105, 25, 89, 57
Offset: 0

Views

Author

Keywords

Comments

As with decimal reversal, initial zeros are ignored; otherwise, the reverse of 1 would be 1000000... ad infinitum.
Numerators of the binary van der Corput sequence. - Eric Rowland, Feb 12 2008
It seems that in most cases A030101(x) = A000265(x) and that if A030101(x) <> A000265(x), the next time A030101(y) = A000265(x), A030101(x) = A000265(y). Also, it seems that if a pair of values exist at one index, they will exist at any index where one of them exist. It also seems like the greater of the pair always shows up on A000265 first. - Dylan Hamilton, Aug 04 2010
The number of occasions A030101(n) = A000265(n) before n = 2^k is A053599(k) + 1. For n = 0..2^19, the sequences match less than 1% of the time. - Andrew Woods, May 19 2012
For n > 0: a(a(n)) = n if and only if n is odd; a(A006995(n)) = A006995(n). - Juli Mallett, Nov 11 2010, corrected: Reinhard Zumkeller, Oct 21 2011
n is binary palindromic if and only if a(n) = n. - Reinhard Zumkeller, corrected: Jan 17 2012, thanks to Hieronymus Fischer, who pointed this out; Oct 21 2011
Given any n > 1, the set of numbers A030109(i) = (A030101(i) - 1)/2 for indexes i ranging from 2^n to 2^(n + 1) - 1 is a permutation of the set of consecutive integers {0, 1, 2, ..., 2^n - 1}. This is important in the standard FFT algorithms (starting or ending bit-reversal permutation). - Stanislav Sykora, Mar 15 2012
Row n of A030308 gives the binary digits of a(n), prepended with zero at even positions. - Reinhard Zumkeller, Jun 17 2012
The binary van der Corput sequence is the infinite sequence of fractions { A030101(n)/A062383(n), n = 0, 1, 2, 3, ... }, and begins 0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16, 5/16, 13/16, 3/16, 11/16, 7/16, 15/16, 1/32, 17/32, 9/32, 25/32, 5/32, 21/32, 13/32, 29/32, 3/32, 19/32, 11/32, 27/32, 7/32, 23/32, 15/32, 31/32, 1/64, 33/64, 17/64, 49/64, ... - N. J. A. Sloane, Dec 01 2019
Record highs occur at n = A209492(m) (for n>=1) with values a(n) = A224195(m) (for n>=3). - Bill McEachen, Aug 02 2023

Examples

			a(100) = 19 because 100 (base 10) = 1100100 (base 2) and R(1100100 (base 2)) = 10011 (base 2) = 19 (base 10).
		

References

  • Hlawka E. The theory of uniform distribution. Academic Publishers, Berkhamsted, 1984. See pp. 93, 94 for the van der Corput sequence. - N. J. A. Sloane, Dec 01 2019

Crossrefs

Cf. A055944 (reverse and add), A178225, A273258.
Cf. A056539, A057889 (bijective variants), A224195, A209492.

Programs

  • Haskell
    a030101 = f 0 where
       f y 0 = y
       f y x = f (2 * y + b) x'  where (x', b) = divMod x 2
    -- Reinhard Zumkeller, Mar 18 2014, Oct 21 2011
    
  • J
    ([: #. [: |. #:)"0 NB. Stephen Makdisi, May 07 2018
    
  • Magma
    A030101:=func; // Jason Kimberley, Sep 19 2011
    
  • Maple
    A030101 := proc(n)
        convert(n,base,2) ;
        ListTools[Reverse](%) ;
        add(op(i,%)*2^(i-1),i=1..nops(%)) ;
    end proc: # R. J. Mathar, Mar 10 2015
    # second Maple program:
    a:= proc(n) local m, r; m:=n; r:=0;
          while m>0 do r:=r*2+irem(m, 2, 'm') od; r
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Nov 17 2015
  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[i, 2]], 2], {i, 0, 80}]
    bitRev[n_] := Switch[Mod[n, 4], 0, bitRev[n/2], 1, 2 bitRev[(n + 1)/2] - bitRev[(n - 1)/4], 2, bitRev[n/2], 3, 3 bitRev[(n - 1)/2] - 2 bitRev[(n - 3)/4]]; bitRev[0] = 0; bitRev[1] = 1; bitRev[3] = 3; Array[bitRev, 80, 0] (* Robert G. Wilson v, Mar 18 2014 *)
  • PARI
    a(n)=if(n<1,0,subst(Polrev(binary(n)),x,2))
    
  • PARI
    a(n) = fromdigits(Vecrev(binary(n)), 2); \\ Michel Marcus, Nov 10 2017
    
  • Python
    def a(n): return int(bin(n)[2:][::-1], 2) # Indranil Ghosh, Apr 24 2017
    
  • Sage
    def A030101(n): return Integer(bin(n).lstrip("0b")[::-1],2) if n!=0 else 0
    [A030101(n) for n in (0..78)]  # Peter Luschny, Aug 09 2012
    
  • Scala
    (0 to 127).map(n => Integer.parseInt(Integer.toString(n, 2).reverse, 2)) // Alonso del Arte, Feb 11 2020

Formula

a(n) = 0, a(2n) = a(n), a(2n+1) = a(n) + 2^(floor(log_2(n)) + 1). For n > 0, a(n) = 2*A030109(n) - 1. - Ralf Stephan, Sep 15 2003
a(n) = b(n, 0) with b(n, r) = r if n = 0, otherwise b(floor(n/2), 2*r + n mod 2). - Reinhard Zumkeller, Mar 03 2010
a(1) = 1, a(3) = 3, a(2n) = a(n), a(4n+1) = 2a(2n+1) - a(n), a(4n+3) = 3a(2n+1) - 2a(n) (as in the Project Euler problem). To prove this, expand the recurrence into binary strings and reversals. - David Applegate, Mar 16 2014, following a posting to the Sequence Fans Mailing List by Martin Møller Skarbiniks Pedersen.
Conjecture: a(n) = 2*w(n) - 2*w(A053645(n)) - 1 for n > 0, where w = A264596. - Velin Yanev, Sep 12 2017

Extensions

Edits (including correction of an erroneous date pointed out by J. M. Bergot) by Jon E. Schoenfield, Mar 16 2014
Name clarified by Antti Karttunen, Nov 09 2017

A061561 Trajectory of 22 under the Reverse and Add! operation carried out in base 2.

Original entry on oeis.org

22, 35, 84, 105, 180, 225, 360, 405, 744, 837, 1488, 1581, 3024, 3213, 6048, 6237, 12192, 12573, 24384, 24765, 48960, 49725, 97920, 98685, 196224, 197757, 392448, 393981, 785664, 788733, 1571328, 1574397, 3144192, 3150333, 6288384, 6294525
Offset: 0

Views

Author

N. J. A. Sloane, May 18 2001

Keywords

Comments

Sequence A058042 written in base 10. 22 is the smallest number whose base 2 trajectory does not contain a palindrome.
lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 0.
lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 1. - Klaus Brockhaus, Dec 09 2009

Crossrefs

Cf. A035522 (trajectory of 1 in base 2), A058042 (trajectory of 22 in base 2, written in base 2), A075253 (trajectory of 77 in base 2), A075268 (trajectory of 442 in base 2), A077076 (trajectory of 537 in base 2), A077077 (trajectory of 775 in base 2), A066059 (trajectory of n in base 2 (presumably) does not reach a palindrome), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n), A075153 (trajectory of 318 in base 4).
Cf. A171470 (a(4*n)/2), A171471 (a(4*n+1)), A171472 (a(4*n+2)/12), A171473 (a(4*n+3)/3).

Programs

  • ARIBAS
    m := 22; stop := 36; c := 0; while c < stop do write(m,","); k := bit_length(m); rev := 0; for i := 0 to k-1 do if bit_test(m,i) then rev := bit_set(rev,k-1-i); end; end; inc(c); m := m+rev; end;.
    
  • Haskell
    a061561 n = a061561_list !! n
    a061561_list = iterate a055944 22  -- Reinhard Zumkeller, Apr 21 2013
  • Magma
    trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a,base)),base); Append(~S, a); end for; return S; end function; trajectory(22, 35, 2); // Klaus Brockhaus, Dec 09 2009
    
  • Mathematica
    binRA[n_] := If[Reverse[IntegerDigits[n, 2]] == IntegerDigits[n, 2], n, FromDigits[Reverse[IntegerDigits[n, 2]], 2] + n]; NestList[binRA, 22, 100] (* Adapted from Ben Branman's code for A213012, Alonso del Arte, Jun 02 2012 *)
  • PARI
    {m=22; stop=36; c=0; while(c0,d=divrem(k,2); k=d[1]; rev=2*rev+d[2]); c++; m=m+rev)}
    

Formula

a(0) = 22; a(1) = 35; for n > 1 and n = 2 (mod 4): a(n) = 6*2^(2*k)-3*2^k where k = (n+6)/4; n = 3 (mod 4): a(n) = 6*2^(2*k)+3*2^k-3 where k = (n+5)/4; n = 0 (mod 4): a(n) = 12*2^(2*k)-3*2^k where k = (n+4)/4; n = 1 (mod 4): a(n) = 12*2^(2*k)+9*2^k-3 where k = (n+3)/4. [Klaus Brockhaus, Sep 05 2002]
G.f.: (22+35*x+18*x^2-72*x^4-90*x^5-48*x^6-60*x^7+80*x^8+112*x^9) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)). [Klaus Brockhaus, Sep 05 2002, edited Dec 09 2009]
a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013

Extensions

More terms from Klaus Brockhaus, May 27 2001

A075253 Trajectory of 77 under the Reverse and Add! operation carried out in base 2.

Original entry on oeis.org

77, 166, 267, 684, 897, 1416, 1557, 2904, 3333, 5904, 6189, 11952, 12813, 24096, 24669, 48480, 50205, 97344, 98493, 195264, 198717, 391296, 393597, 783744, 790653, 1569024, 1573629, 3140352, 3154173, 6283776, 6292989, 12572160
Offset: 0

Views

Author

Klaus Brockhaus, Sep 10 2002

Keywords

Comments

22 is the smallest number whose base 2 trajectory (A061561) provably does not contain a palindrome. 77 is the next number (cf. A075252) with a completely different trajectory which has this property. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below.
lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 1.
lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 0.
Interleaving of A176632, 2*A176633, 3*A176634, 12*A176635.
From A.H.M. Smeets, Feb 11 2019: (Start)
Pattern with cycle length 4 in binary representation, represented by contextfree grammars with production rules:
S_a -> 10 T_a 00, T_a -> 1 T_a 0 | 1100010;
S_b -> 11 T_b 01, T_b -> 0 T_b 1 | 0000101;
S_c -> 10 T_c 000, T_c -> 1 T_c 0 | 1101011;
S_d -> 11 T_d 101, T_d -> 0 T_d 1 | 0100000;
the trajectory is similar to that of 22 (see A058042) except for the stopping strings in T_a, T_b, T_c and T_d. (End)

Examples

			267 (decimal) = 100001011 -> 100001011 + 110100001 = 1010101100 = 684 (decimal).
		

Crossrefs

Cf. A061561 (trajectory of 22 in base 2), A075268 (trajectory of 442 in base 2), A077076 (trajectory of 537 in base 2), A077077 (trajectory of 775 in base 2), A066059 (trajectory of n in base 2 presumably does not reach a palindrome), A075252 (trajectory of n in base 2 does not reach a palindrome and presumably does not join the trajectory of any term m < n), A092210 (trajectory of n in base 2 presumably does not join the trajectory of any m < n).
Cf. A176632 (a(4*n)), A176633 (a(4*n+1)/2), A176634 (a(4*n+2)/3), A176635 (a(4*n+3)/12).

Programs

  • Haskell
    a075253 n = a075253_list !! n
    a075253_list = iterate a055944 77  -- Reinhard Zumkeller, Apr 21 2013
    
  • Magma
    trajectory:=function(init, steps, base) S:=[init]; a:=S[1]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a,base)),base); Append(~S, a); end for; return S; end function; trajectory(77, 31, 2);
    
  • Maple
    seq(coeff(series((77+166*x+36*x^2+186*x^3+96*x^4-636*x^5-672*x^6-348*x^7-44*x^8+632*x^9+504*x^10)/((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Feb 12 2019
  • Mathematica
    CoefficientList[Series[(77+166*x+36*x^2+186*x^3+96*x^4-636*x^5-672*x^6 -348*x^7-44*x^8 +632*x^9+504*x^10)/((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)), {x,0,40}], x] (* G. C. Greubel, Feb 11 2019 *)
    NestWhileList[# + IntegerReverse[#, 2] &, 77,  # !=
    IntegerReverse[#, 2] &, 1, 31] (* Robert Price, Oct 18 2019 *)
  • PARI
    {m=77; stop=34; c=0; while(c0,d=divrem(k,2); k=d[1]; rev=2*rev+d[2]); c++; m=m+rev)}
    
  • Sage
    ((77+166*x+36*x^2+186*x^3+96*x^4-636*x^5-672*x^6 -348*x^7-44*x^8 +632*x^9+504*x^10)/((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 11 2019

Formula

a(0) = 77; a(1) = 166; a(2) = 267; for n > 2 and
n = 3 (mod 4): a(n) = 48*2^(2*k)-21*2^k where k = (n+5)/4;
n = 0 (mod 4): a(n) = 48*2^(2*k)+33*2^k-3 where k = (n+4)/4;
n = 1 (mod 4): a(n) = 96*2^(2*k)-30*2^k where k = (n+3)/4;
n = 2 (mod 4): a(n) = 96*2^(2*k)+6*2^k-3 where k = (n+2)/4.
G.f.: (77+166*x+36*x^2+186*x^3+96*x^4-636*x^5-672*x^6-348*x^7-44*x^8 +632*x^9+504*x^10) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
G.f. for the sequence starting at a(3): 3*x^3*(228+299*x-212*x^2 -378*x^3-448*x^4-446*x^5+432*x^6+524*x^7) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013

Extensions

Three comments added, g.f. edited, MAGMA program and crossrefs added by Klaus Brockhaus, Apr 25 2010

A035522 Reverse and add (in binary) - written in base 10.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 27, 54, 81, 150, 255, 510, 765, 1530, 2295, 6120, 6885, 12240, 13005, 24480, 25245, 48960, 49725, 97920, 98685, 196224, 197757, 392448, 393981, 785664, 788733, 1571328, 1574397, 3144192, 3150333, 6288384
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains

Keywords

Examples

			6 = 110, 110 + 011 = 1001 = 9, so 6 is followed by 9.
		

Crossrefs

Programs

  • Haskell
    a035522 n = a035522_list !! n
    a035522_list = iterate a055944 1
    -- Reinhard Zumkeller, Oct 21 2011
  • Mathematica
    nxt[n_]:=Module[{idn2=IntegerDigits[n,2]},FromDigits[idn2+ Reverse[ idn2],2]]; NestList[nxt,1,40] (* Harvey P. Dale, Oct 02 2011 *)

Formula

a(n+1) = A055944(a(n)), a(0) = 1. [Reinhard Zumkeller, Nov 14 2011]

A075268 Trajectory of 442 under the Reverse and Add! operation carried out in base 2.

Original entry on oeis.org

442, 629, 1326, 2259, 5508, 6585, 11628, 15129, 24912, 26259, 52038, 77337, 155394, 221931, 442374, 639009, 1179738, 1917027, 3539130, 5062869, 10666542, 18285939, 45369156, 54513657, 96444396, 125792217, 207562704, 220034931
Offset: 0

Views

Author

Klaus Brockhaus, Sep 11 2002

Keywords

Comments

22, 77 and 442 are the first terms of A075252. The base 2 trajectory of 442 is completely different from the trajectories of 22 (cf. A061561) and 77 (cf. A075253). Using the formula given below one can prove that it does not contain a palindrome.
lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 1.
lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 0.
Interleaving of 2*A177420, A177421, 6*A177422, 3*A177423.

Examples

			442 (decimal) = 110111010 -> 110111010 + 010111011 = 1001110101 = 629 (decimal).
		

Crossrefs

Cf. A058042 (trajectory of 22 in base 2, written in base 2), A061561 (trajectory of 22 in base 2), A075253 (trajectory of 77 in base 2), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n).
Cf. A177420 (a(4*n)/2), A177421 (a(4*n+1)), A177422 (a(4*n+2)/6), A177423 (a(4*n+3)/3).

Programs

  • Haskell
    a075268 n = a075268_list !! n
    a075268_list = iterate a055944 442  -- Reinhard Zumkeller, Apr 21 2013
  • Magma
    trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a,base)),base); Append(~S, a); end for; return S; end function; trajectory(442, 28, 2);
    
  • Mathematica
    NestWhileList[# + IntegerReverse[#, 2] &, 442,  # !=
    IntegerReverse[#, 2] &, 1, 27] (* Robert Price, Oct 18 2019 *)
  • PARI
    trajectory(n,steps) = {local(v, k=n); for(j=0, steps, print1(k, ", "); v=binary(k); k+=sum(j=1, #v, 2^(j-1)*v[j]))};
    trajectory(442,28);
    

Formula

a(0), ..., a(28) as above; a(29) = 703932681; a(30) =1310348526; a(31) = 2309980455; a(32) = 6143702712; a(33) = 7131271077; a(34) = 12699398352; a(35) = 13441412493; for n > 35 and
n = 0 (mod 4): a(n) = 3*2^(2*k+23)-12576771*2^k where k = (n-16)/4;
n = 1 (mod 4): a(n) = 3*2^(2*k+23)+12576771*2^k-3 where k = (n-17)/4;
n = 2 (mod 4): a(n) = 6*2^(2*k+23)-12576771*2^k where k = (n-18)/4;
n = 3 (mod 4): a(n) = 6*2^(2*k+23)+37730313*2^k-3 where k = (n-19)/4.
G.f.: (442+629*x+372*x^3+1530*x^4-192*x^5-2244*x^6-852*x^7-3784*x^8-8090*x^9 +5046*x^10+29034*x^11+47016*x^12+54354*x^13+79152*x^14+70254*x^15+65196*x^16 +358986*x^17+724128*x^18+334026*x^19+2081820*x^20+6043662*x^21+18678462*x^22+8601966*x^23 -23147244*x^24-15039648*x^25 -31927752*x^26-67877562*x^27+43880046*x^28+297766074*x^29 +396480108*x^30+734881086*x^31+3072255774*x^32+1018370430*x^33-3939844260*x^34-4608944376*x^35 -6616834356*x^36-3107825028*x^37+6655931736*x^38+7777900872*x^39+484428384*x^40 -2233413600*x^41-62899200*x^42+188697600*x^43) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
G.f. for the sequence starting at a(36): 3*x^36*(8455782368+8724086815*x -8321630144*x^2-8589934590*x^3-17045716960*x^4-18118934750*x^5+16911564736*x^6 +17984782524*x^7) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013

Extensions

Comment edited and three comments added, g.f. edited, PARI program revised, MAGMA program and crossrefs added by Klaus Brockhaus, May 07 2010

A077076 Trajectory of 537 under the Reverse and Add! operation carried out in base 2, written in base 10.

Original entry on oeis.org

537, 1146, 1899, 3618, 4713, 9522, 14427, 28386, 37533, 84966, 138123, 353004, 466209, 738024, 833301, 1525224, 1718853, 3048912, 3239469, 6196176, 6583437, 12389280, 12770397, 24975264, 25749789, 49944384, 50706621, 100282176
Offset: 0

Views

Author

Klaus Brockhaus, Oct 25 2002

Keywords

Comments

The base 2 trajectory of 537 = A075252(4) provably does not contain a palindrome. A proof can be based on the formula given below.
lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 1.
lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 0.
Interleaving of 3*A177682, 6*A177683, 3*A177684, 6*A177685.

Examples

			537 (decimal) = 1000011001 -> 1000011001 + 1001100001 = 10001111010= 1146 (decimal).
		

Crossrefs

Cf. A058042 (trajectory of 22 in base 2, written in base 2), A061561 (trajectory of 22 in base 2), A075253 (trajectory of 77 in base 2), A075268 (trajectory of 442 in base 2), A077077 (trajectory of 775 in base 2), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n).
Cf. A177682 (a(4*n)/3), A177683 (a(4*n+1)/6), A177684 (a(4*n+2)/3), A177685 (a(4*n+3)/6).

Programs

  • Haskell
    a077076 n = a077076_list !! n
    a077076_list = iterate a055944 537  -- Reinhard Zumkeller, Apr 21 2013
  • Magma
    trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a,base)),base); Append(~S, a); end for; return S; end function; trajectory(537, 27, 2);
    
  • Mathematica
    NestWhileList[# + IntegerReverse[#, 2] &, 537,  # !=
    IntegerReverse[#, 2] &, 1, 27] (* Robert Price, Oct 18 2019 *)
  • PARI
    trajectory(n,steps) = {local(v, k=n); for(j=0, steps, print1(k, ", "); v=binary(k); k+=sum(j=1, #v, 2^(j-1)*v[j]))};
    trajectory(537,27);
    

Formula

a(0), ..., a(11) as above; for n > 11 and
n = 0 (mod 4): a(n) = 3*2^(2*k+13)+18249*2^k-3 where k = (n-4)/4;
n = 1 (mod 4): a(n) = 6*2^(2*k+13)-12102*2^k where k = (n-5)/4;
n = 2 (mod 4): a(n) = 6*2^(2*k+13)+11718*2^k-3 where k = (n-6)/4;
n = 3 (mod 4): a(n) = 12*2^(2*k+13)-11910*2^k where k = (n-7)/4.
G.f.: 3*(179+382*x+96*x^2+60*x^3-328*x^4-444*x^5+1170*x^6+2232*x^7 +1166*x^8+5644*x^9+15402*x^10+46922*x^11+39850*x^12-62920*x^13-132612*x^14 -97532*x^15-34148*x^16+83800*x^17+109224*x^18+21856*x^19) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
G.f. for the sequence starting at a(12): 3*x^12*(155403+246008*x-188442*x^2-229616*x^3-260350*x^4-508920*x^5+293388*x^6+492528*x^7) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4))
a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013

Extensions

Comment edited and three comments added, g.f. edited, PARI program revised, MAGMA program and crossrefs added by Klaus Brockhaus, May 12 2010

A077077 Trajectory of 775 under the Reverse and Add! operation carried out in base 2, written in base 10.

Original entry on oeis.org

775, 1674, 2325, 5022, 8919, 23976, 26757, 47376, 49581, 96048, 102669, 193056, 197469, 388704, 401949, 779328, 788157, 1563840, 1590333, 3131520, 3149181, 6273408, 6326397, 12554496, 12589821, 25129728, 25235709, 50274816, 50345469
Offset: 0

Views

Author

Klaus Brockhaus, Oct 25 2002

Keywords

Comments

The base 2 trajectory of 775 = A075252(5) provably does not contain a palindrome. A proof can be based on the formula given below.
lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 1.
lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 0.
Interleaving of A177843, 6*A177844, 3*A177845, 6*A177846.

Examples

			775 (decimal) = 1100000111 -> 1100000111 + 1110000011 = 11010001010 = 1674 (decimal).
		

Crossrefs

Cf. A058042 (trajectory of 22 in base 2, written in base 2), A061561 (trajectory of 22 in base 2), A075253 (trajectory of 77 in base 2), A075268 (trajectory of 442 in base 2), A077076 (trajectory of 537 in base 2), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n).
Cf. A177843 (a(4*n)), A177844 (a(4*n+1)/6), A177845 (a(4*n+2)/3), A177846 (a(4*n+3)/6).

Programs

  • Haskell
    a077077 n = a077077_list !! n
    a077077_list = iterate a055944 775  -- Reinhard Zumkeller, Apr 21 2013
  • Magma
    trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:= Seqint(Reverse(Intseq(a,base)),base); Append(~S, a); end for; return S; end function; trajectory(775, 28, 2);
    
  • Mathematica
    NestWhileList[# + IntegerReverse[#, 2] &, 775,  # !=
    IntegerReverse[#, 2] &, 1, 28] (* Robert Price, Oct 18 2019 *)
  • PARI
    trajectory(n,steps) = {local(v, k=n); for(j=0, steps, print1(k, ", "); v=binary(k); k+=sum(j=1, #v, 2^(j-1)*v[j]))};
    trajectory(775,28);
    

Formula

a(0), ..., a(5) as above; for n > 5 and
n = 2 (mod 4): a(n) = 3*2^(2*k+7)+273*2^k-3 where k = (n+6)/4;
n = 3 (mod 4): a(n) = 6*2^(2*k+7)-222*2^k where k = (n+5)/4;
n = 0 (mod 4): a(n) = 6*2^(2*k+7)+54*2^k-3 where k = (n+4)/4;
n = 1 (mod 4): a(n) = 12*2^(2*k+7)-282*2^k where k = (n+3)/4.
a(n) = -a(n-1)+2*a(n-2)+2*a(n-3)+2*a(n-4)+2*a(n-5)-4*a(n-6)-4*a(n-7)-3 for n > 12; a(0), ..., a(12) as above.
G.f.: (775+1674*x+1944*x^4+8910*x^5+4650*x^6-14508*x^7-19840*x^8-22644*x^9- 1860*x^10+28680*x^11+14328*x^12-2112*x^13) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
G.f. for the sequence starting at a(6): 3*(8919+15792*x-10230*x^2- 15360*x^3-15358*x^4-31696*x^5+16668*x^6+31264*x^7) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).
a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013

Extensions

Comment edited, three comments and formula added, g.f. edited, PARI program revised, MAGMA program and crossrefs added by Klaus Brockhaus, May 14 2010

A319785 a(n) = A073138(n) + A038573(n).

Original entry on oeis.org

0, 2, 3, 6, 5, 9, 9, 14, 9, 15, 15, 21, 15, 21, 21, 30, 17, 27, 27, 35, 27, 35, 35, 45, 27, 35, 35, 45, 35, 45, 45, 62, 33, 51, 51, 63, 51, 63, 63, 75, 51, 63, 63, 75, 63, 75, 75, 93, 51, 63, 63, 75, 63, 75, 75, 93, 63, 75, 75, 93, 75, 93, 93, 126, 65, 99, 99, 119
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2018

Keywords

Comments

This sequence is different from A055944. For example, A055944(5) = 10 and a(5) = 9.

Crossrefs

Base b: this sequence (b=2), A319803 (b=3), A319804 (b=4), A319805 (b=5), A319806 (b=6), A319807 (b=7), A319808 (b=8), A319747 (b=9), A052008 (b=10).

Programs

  • Mathematica
    Table[FromDigits[Reverse[#], 2] + FromDigits[#, 2] & [Sort[IntegerDigits[n, 2]]], {n, 0, 100}] (* Paolo Xausa, Aug 07 2024 *)
  • PARI
    a(n) = my(dn=binary(n)); fromdigits(vecsort(dn), 2) + fromdigits(vecsort(dn,,4), 2); \\ Michel Marcus, Sep 28 2018

A349239 a(n) = n + (reversal of digits in the Zeckendorf representation of n).

Original entry on oeis.org

0, 2, 3, 4, 8, 6, 12, 11, 9, 18, 16, 15, 24, 14, 28, 24, 22, 36, 22, 36, 32, 22, 44, 37, 33, 55, 32, 54, 47, 33, 55, 48, 44, 66, 35, 70, 58, 51, 86, 48, 83, 71, 48, 83, 71, 64, 99, 51, 86, 74, 67, 102, 64, 99, 87, 56, 112, 92, 80, 136, 74, 130, 110, 72, 128, 108
Offset: 0

Views

Author

Kevin Ryde, Nov 11 2021

Keywords

Crossrefs

Cf. A189920 (Zeckendorf digits), A349238 (reverse), A349240 (reverse and subtract), A348570 (Lychrels).
Other bases: A055944 (binary), A056964 (decimal).

Programs

  • PARI
    \\ See links.
    
  • Python
    # Using functions NumToFib and RevFibToNum from A349238.
    n, a = 0, 0
    print(a + a, end = ", ")
    while n < 65:
        n += 1
        print(n + RevFibToNum(NumToFib(n)), end = ", ") # A.H.M. Smeets, Nov 14 2021

Formula

a(n) = n + A349238(n).
a(n) = 2*n - A349240(n).
Showing 1-10 of 12 results. Next