A023108 Positive integers which apparently never result in a palindrome under repeated applications of the function A056964(x) = x + (x with digits reversed).
196, 295, 394, 493, 592, 689, 691, 788, 790, 879, 887, 978, 986, 1495, 1497, 1585, 1587, 1675, 1677, 1765, 1767, 1855, 1857, 1945, 1947, 1997, 2494, 2496, 2584, 2586, 2674, 2676, 2764, 2766, 2854, 2856, 2944, 2946, 2996, 3493, 3495, 3583, 3585, 3673, 3675
Offset: 1
Examples
From _M. F. Hasler_, Feb 16 2020: (Start) Under the "add reverse" operation, we have: 196 (+ 691) -> 887 (+ 788) -> 1675 (+ 5761) -> 7436 (+ 6347) -> 13783 (+ 38731) -> etc. which apparently never leads to a palindrome. Similar for 295 (+ 592) -> 887, 394 (+ 493) -> 887, 790 (+ 097) -> 887 and 689 (+ 986) -> 1675, which all merge immediately into the above sequence, and also for the reverse of any of the numbers occurring in these sequences: 493, 592, 691, 788, ... 879 (+ 978) -> 1857 -> 9438 -> 17787 -> 96558 is the only other "root" Lychrel below 1000 which yields a sequence distinct from that of 196. (End)
References
- Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages. See Entry 196.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000 (tested for 200 iterations; first 249 terms from William Boyles)
- DeCode, Lychrel Number, dCode.fr 'toolkit' to solve games, riddles, geocaches, 2020.
- Jason Doucette, World Records
- Martianus Frederic Ezerman, Bertrand Meyer and Patrick Sole, On Polynomial Pairs of Integers, arXiv:1210.7593 [math.NT], 2012-2014.
- Patrick De Geest, Some thematic websources
- James Grime and Brady Haran, What's special about 196?, Numberphile video (2015).
- Fred Gruenberger, How to handle numbers with thousands of digits, and why one might want to, Computer Recreations, Scientific American, 250 (No. 4, 1984), 19-26.
- R. K. Guy, What's left?, Math Horizons, Vol. 5, No. 4 (April 1998), pp. 5-7.
- Tim Irvin, About Two Months of Computing, or An Addendum to Mr. Walker's Three Years of Computing
- Niphawan Phoopha and Prapanpong Pongsriiam, Notes on 1089 and a Variation of the Kaprekar Operator, Int'l J. Math. Comp. Sci. (2021) Vol. 16, No. 4, 1599-1606.
- Project Euler, Problem 55: How many Lychrel numbers are there below ten-thousand?
- A.H.M. Smeets, Distribution of terms < 10000000 (number of terms in interval of length 10000)
- Wade VanLandingham, 196 and other Lychrel numbers
- Wade VanLandingham, Largest known Lychrel number
- John Walker, Three Years Of Computing: Final Report On The Palindrome Quest
- Eric Weisstein's World of Mathematics, 196 Algorithm.
- Eric Weisstein's World of Mathematics, Palindromic Number Conjecture
- Eric Weisstein's World of Mathematics, Lychrel Number
- Index entries for sequences related to Reverse and Add!
Crossrefs
Programs
-
Mathematica
With[{lim = 10^3}, Select[Range@ 4000, Length@ NestWhileList[# + IntegerReverse@ # &, #, ! PalindromeQ@ # &, 1, lim] == lim + 1 &]] (* Michael De Vlieger, Dec 23 2017 *)
-
PARI
select( {is_A023108(n, L=exponent(n+1)*5)=while(L--&& n*2!=n+=A004086(n),);!L}, [1..3999]) \\ with {A004086(n)=fromdigits(Vecrev(digits(n)))}; default value for search limit L chosen according to known records A065199 and indices A065198. - M. F. Hasler, Apr 13 2019, edited Feb 16 2020
Extensions
Edited by M. F. Hasler, Dec 04 2007
Comments