cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A119248 a(n) is the difference between denominator and numerator of the n-th alternating harmonic number Sum_{k=1..n} (-1)^(k+1)/k = A058313(n)/A058312(n).

Original entry on oeis.org

0, 1, 1, 5, 13, 23, 101, 307, 641, 893, 7303, 9613, 97249, 122989, 19793, 48595, 681971, 818107, 13093585, 77107553, 66022193, 76603673, 1529091919, 1752184789, 7690078169, 8719737569, 23184641107, 3721854001, 96460418429
Offset: 1

Views

Author

Alexander Adamchuk, Jul 22 2006

Keywords

Comments

a(n)/A058312(n) = 1 - A058313(n)/A058312(n) appears in the locker puzzle (see the links in A364317) for the probability of success with the strategy used there for n lockers and allowed openings of up to floor(n/2) lockers. Note that gcd(a(n), A058312(n)) = 1. - Wolfdieter Lang, Aug 12 2023

Crossrefs

Programs

  • Mathematica
    Denominator[Table[Sum[(-1)^(k+1)/k,{k,1,n}],{n,1,30}]]-Numerator[Table[Sum[(-1)^(k+1)/k,{k,1,n}],{n,1,30}]]
  • PARI
    a(n) = my(x=sum(k=1, n, (-1)^(k+1)/k)); denominator(x) - numerator(x); \\ Michel Marcus, May 07 2020

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/k) - numerator(Sum_{k=1..n} (-1)^(k+1)/k).
a(n) = A058312(n) - A058313(n).
a(n) = A075829(n+1).
a(n) = numerator(Sum_{k=2..n} (-1)^k/k). (Cf. A024168.) - Petros Hadjicostas, May 17 2020

A269626 a(n) = A003418(n) / A058312(n) with a(0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 55, 55, 55, 55, 55, 55, 55
Offset: 0

Views

Author

Jeppe Stig Nielsen, Mar 01 2016

Keywords

Crossrefs

Programs

  • PARI
    a(n)=lcm([1..n])/denominator(sum(k=1,n,(-1)^(k+1)/k))

A337920 Numbers k such that d(k) = d(k+1), where d(k) = A058312(k) is the denominator of the k-th alternating harmonic number.

Original entry on oeis.org

5, 9, 11, 13, 17, 20, 21, 23, 25, 29, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 75, 77, 79, 81, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 97, 98, 101, 104, 105, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2021

Keywords

Comments

The asymptotic density of this sequence is 1 (Wu and Chen, 2019).

Examples

			5 is a term since A058312(5) = A058312(6) = 60.
		

Crossrefs

Cf. A058312, A065454 (analogous with denominators of harmonic numbers).

Programs

  • Mathematica
    d[n_] := Denominator @ Sum[(-1)^(k + 1)/k, {k, 1, n}]; Position[Partition[d[Range[120]], 2, 1], {x_, x_}] // Flatten

A351789 Decimal expansion of Sum_{k>=1} AH(k)*F(k)/2^k, where AH(k) = A058313(k)/A058312(k) is the k-th alternating harmonic number and F(k) = A000045(k) is the k-th Fibonacci number.

Original entry on oeis.org

1, 5, 1, 4, 3, 7, 0, 3, 7, 4, 2, 0, 6, 2, 2, 1, 8, 7, 2, 4, 3, 4, 5, 9, 4, 7, 8, 9, 1, 6, 1, 6, 5, 0, 7, 7, 9, 6, 4, 8, 3, 1, 3, 1, 3, 3, 1, 6, 8, 8, 7, 6, 1, 7, 7, 9, 4, 2, 3, 0, 6, 1, 8, 4, 4, 6, 5, 0, 7, 5, 3, 9, 0, 1, 5, 1, 6, 6, 4, 2, 1, 7, 5, 0, 2, 8, 7, 8, 0, 1, 8, 1, 9, 2, 0, 0, 2, 1, 0, 1, 9, 3, 4, 9, 5
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2022

Keywords

Examples

			1.51437037420622187243459478916165077964831313316887...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[5/4] + 6*Log[GoldenRatio]/Sqrt[5], 10, 100][[1]]

Formula

Equals log(5/4) + 6*log(phi)/sqrt(5), where phi is the golden ratio (A001622) (Stewart, 2022).

A351794 Decimal expansion of Sum_{k>=1} AH(k)*L(k)/2^k, where AH(k) = A058313(k)/A058312(k) is the k-th alternating harmonic number and L(k) = A000032(k) is the k-th Lucas number.

Original entry on oeis.org

2, 8, 2, 1, 4, 7, 5, 3, 5, 8, 7, 6, 2, 6, 4, 9, 4, 6, 1, 7, 4, 6, 0, 5, 1, 4, 3, 5, 6, 8, 2, 5, 3, 0, 6, 3, 7, 2, 4, 6, 6, 5, 6, 6, 6, 9, 3, 4, 5, 4, 6, 9, 9, 1, 4, 7, 9, 8, 8, 9, 4, 1, 3, 7, 4, 2, 4, 9, 8, 1, 3, 0, 8, 6, 1, 0, 4, 6, 4, 8, 0, 7, 0, 6, 2, 6, 7, 2, 9, 9, 5, 7, 8, 7, 1, 2, 6, 4, 8, 4, 1, 7, 9, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2022

Keywords

Examples

			2.82147535876264946174605143568253063724665666934546...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[3*Log[5/4] + 10*Log[GoldenRatio]/Sqrt[5], 10, 100][[1]]

Formula

Equals 3*log(5/4) + 10*log(phi)/sqrt(5), where phi is the golden ratio (A001622).
Equals (4/3)*log(5/4) + (5/3)*A351789.

A058313 Numerator of the n-th alternating harmonic number, Sum_{k=1..n} (-1)^(k+1)/k.

Original entry on oeis.org

1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 33464927, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 7751493599, 236266661971
Offset: 1

Views

Author

N. J. A. Sloane, Dec 09 2000

Keywords

Comments

A Wolstenholme-like theorem: for prime p > 3, if p = 6k-1, then p divides a(4k-1), otherwise if p = 6k+1, then p divides a(4k). - T. D. Noe, Apr 01 2004
For the limit n -> infinity of the partial sums of the alternating harmonic series see A002162. - Wolfdieter Lang, Sep 08 2015
a(n)/A058312(n) appears in the locker puzzle (see the links in A364317) as the probability of failures with the strategy used for n lockers and opening of up to floor(n/2) lockers. Note the alternative formula given below for a(n)/A058312(n) using only positive fractions. - Wolfdieter Lang, Aug 12 2023

Examples

			1, 1/2, 5/6, 7/12, 47/60, 37/60, 319/420, 533/840, 1879/2520, ...
For n=4: a(n)/A058312(n) = 7/12 because 1/1 - 1/2 + 1/3 - 1/4 = 7/12 = 1/4 + 1/3. - _Wolfdieter Lang_, Aug 12 2023
		

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 1961, page 14, #71.

Crossrefs

Denominators are A058312. Cf. A025530.
Apart from leading term, same as A075830.
Cf. A001008 (numerator of n-th harmonic number).
Bisections are A049281 and A082687.
Cf. A181983.

Programs

  • Haskell
    import Data.Ratio((%), numerator)
    a058313 n = a058313_list !! (n-1)
    a058313_list = map numerator $ scanl1 (+) $ map (1 %) $ tail a181983_list
    -- Reinhard Zumkeller, Mar 20 2013
  • Maple
    A058313 := n->numer(add((-1)^(k+1)/k,k=1..n));
    # Alternatively:
    a := n -> numer(harmonic(n) - harmonic((n-modp(n,2))/2)):
    seq(a(n), n=1..29); # Peter Luschny, May 03 2016
  • Mathematica
    Numerator[Table[Sum[(-1)^(k + 1)/k, {k, n}], {n, 30}]] (* Harvey P. Dale, Jul 18 2012 *)
    a[n_]:= (-1)^n (HarmonicNumber[n/2 - 1/2] - HarmonicNumber[n/2] + (-1)^n Log[4])/2; Table[a[n] // FullSimplify, {n, 29}] // Numerator (* Gerry Martens, Jul 05 2015 *)
    Rest[Numerator[CoefficientList[Series[Log[1 + x]/(1 - x), {x, 0, 33}], x]]] (* Vincenzo Librandi, Jul 06 2015 *)
    Table[Log[2] - (-1)^n LerchPhi[-1, 1, n + 1], {n, 20}] // Numerator (* Eric W. Weisstein, Aug 25 2023 *)
  • PARI
    a(n)=(-1)^n*numerator(polcoeff(log(1-x)/(x+1)+O(x^(n+1)), n))
    

Formula

G.f. for a(n)/A058312(n): log(1+x)/(1-x). - Benoit Cloitre, Jun 15 2003
a(n) = (n*a(n-1) + (-1)^(n+1)*A058312(n-1))/gcd(n*a(n-1) + (-1)^(n+1)*A058312(n-1), n*A058312(n-1)). - Robert Israel, Jul 06 2015
From Peter Luschny, May 03 2016: (Start)
Let H(n) denote the harmonic numbers, AH(n) denote the alternating harmonic numbers, Psi the polygamma function and euler(n,x) the Euler polynomials. Then:
AH(n) = H(n) - H((n - n mod 2)/2).
AH(z) = log(2)+(1/2)*cos(Pi*z)*(Psi(z/2+1/2)-Psi(z/2+1)).
AH(z) ~ log(2)+(1/2)*cos(Pi*z)*(-1/z+1/(2*z^2)-1/(4*z^4)+1/(2*z^6)-...).
AH(z) ~ log(2)-(1/2)*cos(Pi*z)*Sum_{n>=0} Euler(n,0)/z^(n+1). (End)
Sum_{k>=1} (-1)^(k+1)*AH(k)/k = Pi^2/12 + log(2)^2/2 (Boyadzhiev, 2013). - Amiram Eldar, Oct 04 2021
a(n)/A058312(n) = Sum_{j=0..ceiling(n/2) - 1} 1/(n-j), for n >= 1. (Proof by comparing the recurrences for even and odd n.) - Wolfdieter Lang, Aug 12 2023
For n >= 1, log(2) = a(n)/A058312(n) + (-1)^n*n!*Sum_{k >= 1} 1/(k*(k + 1)* ...*(k + n)*2^k). - Peter Bala, Dec 07 2023
a(n) = the (reduced) numerator of the continued fraction 1/(1 + 1^2/(1 + 2^2/(1 + 3^2/(1 + ... + (n-1)^2/(1))))). - Peter Bala, Feb 18 2024

A197070 Decimal expansion of the Dirichlet eta-function at 3.

Original entry on oeis.org

9, 0, 1, 5, 4, 2, 6, 7, 7, 3, 6, 9, 6, 9, 5, 7, 1, 4, 0, 4, 9, 8, 0, 3, 6, 2, 1, 1, 3, 3, 5, 8, 7, 4, 9, 3, 0, 7, 3, 7, 3, 9, 7, 1, 9, 2, 5, 5, 3, 7, 4, 1, 6, 1, 3, 4, 4, 2, 0, 3, 6, 6, 6, 5, 0, 6, 3, 7, 8, 6, 5, 4, 3, 3, 9
Offset: 0

Views

Author

R. J. Mathar, Oct 09 2011

Keywords

Comments

This constant is irrational by Apéry's theorem. - Charles R Greathouse IV, Feb 11 2024

Examples

			0.9015426773696957140498036211335874930737...
		

Crossrefs

Cf. A002117 (zeta(3)), A058312, A058313, A072691, A136675, A233090 (5*zeta(3)/8), A233091 (7*zeta(3)/8), A334582.

Programs

Formula

Equals 3*zeta(3)/4 = 3*A002117/4.
Also equals the integral over the unit cube [0,1]x[0,1]x[0,1] of 1/(1+x*y*z) dx dy dz. - Jean-François Alcover, Nov 24 2014
Equals Sum_{n>=1} (-1)^(n+1)/n^3. - Terry D. Grant, Aug 03 2016
Equals Lim_{n -> infinity} A136675(n)/A334582(n). - Petros Hadjicostas, May 07 2020
Equals Sum_{n>=1} AH(2*n)/n^2, where AH(n) = Sum_{k=1..n} (-1)^(k+1)/k = A058313(n)/A058312(n) is the n-th alternating harmonic number (Stewart, 2020). - Amiram Eldar, Oct 04 2021
Equals -int_0^1 log(x)log(1+x)/x dx [Barbieri] - R. J. Mathar, Jun 07 2024

A288965 Number of key comparisons to sort all n! permutations of n elements by the optimal dual-pivot quicksort.

Original entry on oeis.org

0, 0, 2, 16, 114, 866, 7188, 65580, 655872, 7157376, 84775680, 1084343040, 14906039040, 219267751680, 3437854963200, 57247256424960, 1009189972869120, 18779054120386560, 367876307230064640, 7568437652936294400, 163164173556503347200, 3678547646214424166400
Offset: 0

Views

Author

Daniel Krenn, Jun 20 2017

Keywords

Crossrefs

Programs

  • Maple
    haralt := proc(n) local k: add((-1)^k/k, k = 1 .. n): end proc:
    a := proc(n) local v, v1, v2: if n = 0 or n = 1 then v := 0: end if; if n = 2 then v := 2: end if: if n = 3 then v := 16: end if:
    if 4 <= n then v1 := 9/5*n*harmonic(n) - 1/5*n*haralt(n) - 89/25*n + 67/40*harmonic(n) - 3/40*haralt(n) - 83/800 + 1/10*(-1)^n:
    if 0 = n mod 2 then v2 := -1/320*1/(n - 3) - 3/320*1/(n - 1): end if:
    if 1 = n mod 2 then v2 := 3/320*1/(n - 2) + 1/320*1/n: end if:
    v := n!*(v1 + v2): end if: v: end proc:
    seq(a(n1), n1 = 0 .. 30); # Petros Hadjicostas, May 03 2020
  • Mathematica
    haralt[n_] := Sum[(-1)^k/k, {k, 1, n}];
    a[n_] := Switch[n, 0|1, 0, 2, 2, 3, 16, _, n! ((9/5) n HarmonicNumber[n] - (1/5) n haralt[n] - (89/25) n + (67/40) HarmonicNumber[n] - (3/40)* haralt[n] - 83/800 + (-1)^n/10 - (Boole[EvenQ[n]]/320)(1/(n-3) + 3/(n-1)) + (Boole[OddQ[n]]/320)(3/(n-2) + 1/n))];
    a /@ Range[0, 21] (* Jean-François Alcover, Jun 05 2020 *)
  • PARI
    lista(nn) = {my(x='x + O('x^nn)); concat([0,0],Vec(serlaplace(-8*log(1-x)/(5*(1-x)^2) + 2*atanh(x)/(5*(1-x)^2) - 44/(25*(1-x)^2) - atanh(x)/(4*(1-x)) + 281/(160*(1-x)) + ((1-x)^3/320)*atanh(x) + x^3/150 - 27*x^2/1600 + 17*x/1600 + 3/800)))}; \\ Petros Hadjicostas and Michel Marcus, May 04 2020, e.g.f. from p. 29 in Aumüller et al. (2016)

Formula

a(n) = n!*((9/5)*n*Harmonic(n) - (1/5)*n*Harmonic_alt(n) - (89/25)*n + (67/40)*Harmonic(n) - (3/40)*Harmonic_alt(n) - 83/800 + (-1)^n/10 - ([n even]/320)*(1/(n - 3) + 3/(n - 1)) + ([n odd]/320)*(3/(n - 2) + 1/n)) for n >= 4, where [condition] = 1 if the condition holds, and 0 otherwise, and Harmonic_alt(n) = Sum_{k=1..n} (-1)^n/n = -A058313(n)/A058312(n). [This follows from Theorem 12.1 in Aumüller et al. (2016) or Theorem 5.7 in Aumüller et al. (2019).] - Petros Hadjicostas, May 03 2020

A082687 Numerator of Sum_{k=1..n} 1/(n+k).

Original entry on oeis.org

1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

Numerator of Sum_{k=0..n-1} 1/((k+1)(2k+1)) (denominator is A111876). - Paul Barry, Aug 19 2005
Numerator of the sum of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 11 2006
Numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum_{k=1..n} 1/k is the n-th Harmonic Number. - Alexander Adamchuk, Apr 11 2006
a(n) almost always equals A117731(n) = numerator(n*Sum_{k=1..n} 1/(n+k)) = numerator(Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1)) but differs for n = 14, 53, 98, 105, 111, 114, 119, 164. - Alexander Adamchuk, Jul 16 2006
Sum_{k=1..n} 1/(n+k) = n!^2 *Sum_{j=1..n} (-1)^(j+1) /((n+j)!(n-j)!j). - Leroy Quet, May 20 2007
Seems to be the denominator of the harmonic mean of the first n hexagonal numbers. - Colin Barker, Nov 19 2014
Numerator of 2*n*binomial(2*n,n)*Sum_{k = 0..n-1} (-1)^k* binomial(n-1,k)/(n+k+1)^2. Cf. A049281. - Peter Bala, Feb 21 2017
From Peter Bala, Feb 16 2022: (Start)
2*Sum_{k = 1..n} 1/(n+k) = 1 + 1/(1*2)*(n-1)/(n+1) - 1/(2*3)*(n-1)*(n-2)/((n+1)*(n+2)) + 1/(3*4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) - 1/(4*5)*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) + - .... Cf. A101028.
2*Sum_{k = 1..n} 1/(n+k) = n - (1 + 1/2^2)*n*(n-1)/(n+1) + (1/2^2 + 1/3^2)*n*(n-1)*(n-2)/((n+1)*(n+2)) - (1/3^2 + 1/4^2)*n*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + (1/4^2 + 1/5^2)*n*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) - + .... Cf. A007406 and A120778.
These identities allow us to extend the definition of Sum_{k = 1..n} 1/(n+k) to non-integral values of n. (End)

Examples

			H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.
n=2: HilbertMatrix(n,n)
   1  1/2
  1/2 1/3
so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7.
The n X n Hilbert matrix begins:
   1   1/2  1/3  1/4  1/5  1/6  1/7  1/8  ...
  1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9  ...
  1/3  1/4  1/5  1/6  1/7  1/8  1/9  1/10 ...
  1/4  1/5  1/6  1/7  1/8  1/9  1/10 1/11 ...
  1/5  1/6  1/7  1/8  1/9  1/10 1/11 1/12 ...
  1/6  1/7  1/8  1/9  1/10 1/11 1/12 1/13 ...
		

Crossrefs

Bisection of A058313, A082688 (denominators).

Programs

  • Magma
    [Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
    
  • Maple
    a := n -> numer(harmonic(2*n) - harmonic(n)):
    seq(a(n), n=1..20); # Peter Luschny, Nov 02 2017
  • Mathematica
    Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
    
  • SageMath
    [numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # G. C. Greubel, Jul 24 2023

Formula

Limit_{n -> oo} Sum_{k=1..n} 1/(n+k) = log(2).
Numerator of Psi(2*n+1) - Psi(n+1). - Vladeta Jovovic, Aug 24 2003
a(n) = numerator((Sum_{k=1..2*n} 1/k) - Sum_{k=1..n} 1/k). - Alexander Adamchuk, Apr 11 2006
a(n) = numerator(Sum_{j=1..n} (Sum_{i=1..n} 1/(i+j-1))). - Alexander Adamchuk, Apr 11 2006
The o.g.f for Sum_{k=1..n} 1/(n+k) is f(x) = (sqrt(x)*log((1+sqrt(x))/(1-sqrt(x))) + log(1-x))/(2*x*(1-x)).

A125581 Numbers n such that n does not divide the denominator of the n-th harmonic number nor the denominator of the n-th alternating harmonic number.

Original entry on oeis.org

77, 847, 9317, 102487, 596778, 1127357, 1193556, 6161805, 12323610, 12400927
Offset: 1

Views

Author

Alexander Adamchuk, Jan 03 2007

Keywords

Comments

Note that a(1) = 7*11, a(2) = 7*11^2, and a(3) = 7*11^3.
Harmonic numbers are defined as H(n) = Sum_{k=1..n} 1/k = A001008(n)/A002805(n).
Alternating harmonic numbers are defined as H'(n) = Sum_{k=1..n} (-1)^(k+1)*1/k = A058313(n)/A058312(n).
Numbers n such that n does not divide the denominator of the n-th harmonic number are listed in A074791. Numbers n such that n does not divide the denominator of the n-th alternating harmonic number are listed in A121594.
This sequence is the intersection of A074791 and A121594.
Comments from Max Alekseyev, Mar 07 2007: (Start)
While A125581 indeed contains the geometric progression 7*11^n as a subsequence, it also contains other geometric progressions such as: 546*1093^n, 1092*1093^n, 1755*3511^n, 3510*3511^n and 4896*5557^n (see A126196 and A126197). It may also contain some "isolated" terms (i.e. not participating in the geometric progressions) but such terms are harder to find and at the moment I have no proof that they exist.
This is a sketch of my proof that geometric progression 7*11^n and the others mentioned above belong to A125581.
Lemma 1. H'(n) = H(n) - H([n/2]).
Lemma 2. For prime p and integer n >= p, valuation(H(n),p) >= valuation(H([n/p]),p) - 1.
Theorem. For an integer b > 1 and a prime number p such that p divides the numerators of both H(b) and H([b/2]), the geometric progression b*p^n belongs to A125581.
Proof. It is enough to show that valuation(H(b*p^n),p) > -n and valuation(H'(b*p^n), p) > -n. By Lemma 2 we have valuation(H(b*p^n), p) >= valuation(H(b), p) - n >= 1 - n > -n.
From this inequality and Lemma 1, we have valuation(H'(b*p^n), p) >= min{ valuation(H(b*p^n), p), valuation(H([b*p^n/2]), p) } >= min{ 1 - n, valuation(H([b*p^n/2]), p) }. It remains to show that valuation(H([b*p^n/2]), p) >= 1 - n.
Again by Lemma 2, we have valuation(H([b*p^n/2]), p) >= valuation(H([b/2]), p) - n >= 1 - n, which completes the proof.
It is easy to check that this Theorem holds for the aforementioned geometric progressions. (End)

Crossrefs

Programs

  • Mathematica
    f=0; g=0; Do[g=g+1/n; f=f+(-1)^(n+1)/n; If[ !IntegerQ[Denominator[g]/n]&&!IntegerQ[Denominator[f]/n], Print[n]], {n, 1, 10000}]

Extensions

More terms from Max Alekseyev, Mar 11 2007
a(8)-a(10) from Max Alekseyev, Mar 19 2007
Showing 1-10 of 40 results. Next