A119248 a(n) is the difference between denominator and numerator of the n-th alternating harmonic number Sum_{k=1..n} (-1)^(k+1)/k = A058313(n)/A058312(n).
0, 1, 1, 5, 13, 23, 101, 307, 641, 893, 7303, 9613, 97249, 122989, 19793, 48595, 681971, 818107, 13093585, 77107553, 66022193, 76603673, 1529091919, 1752184789, 7690078169, 8719737569, 23184641107, 3721854001, 96460418429
Offset: 1
Programs
-
Mathematica
Denominator[Table[Sum[(-1)^(k+1)/k,{k,1,n}],{n,1,30}]]-Numerator[Table[Sum[(-1)^(k+1)/k,{k,1,n}],{n,1,30}]]
-
PARI
a(n) = my(x=sum(k=1, n, (-1)^(k+1)/k)); denominator(x) - numerator(x); \\ Michel Marcus, May 07 2020
Formula
a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/k) - numerator(Sum_{k=1..n} (-1)^(k+1)/k).
a(n) = A075829(n+1).
a(n) = numerator(Sum_{k=2..n} (-1)^k/k). (Cf. A024168.) - Petros Hadjicostas, May 17 2020
Comments