A091109
Number of occurrences of smallest prime factor in all partitions of n-th composite number: a(n)=A066633(A002808(n), A056608(n)).
Original entry on oeis.org
3, 8, 19, 15, 41, 83, 160, 122, 295, 526, 911, 683, 1538, 2540, 853, 4115, 3050, 6551, 10269, 15873, 11664, 24222, 8415, 36532, 54509, 39784, 80524, 117862, 171036, 124143, 246211, 351769, 72718, 499042, 360550, 703268, 984857, 353996
Offset: 1
n=2: A002808(2)=6=2*3 has A000041(6)=11 partitions: 6 = 5+1 = 4+2 = 4+1+1 = 3+3 = 3+2+1 = 3+1+1+1 = 2+2+2 = 2+2+1+1 = 2+1+1+1+1 = 1+1+1+1+1+1, 2 occurs 8 times, therefore a(2)=8.
-
Count[Flatten[IntegerPartitions[#]],FactorInteger[#][[1,1]]]&/@ Select[ Range[ 60],CompositeQ] (* Harvey P. Dale, Sep 08 2018 *)
A000070
a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501
Offset: 0
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 45*x^7 + 67*x^8 + ...
From _Omar E. Pol_, Oct 25 2012: (Start)
For n = 5 consider the partitions of n+1:
--------------------------------------
. Number
Partitions of 6 of 1's
--------------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 0
2 + 2 + 2 .................. 0
5 + 1 ...................... 1
3 + 2 + 1 .................. 1
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
35-16 = 19
.
The difference between the sum of the first column and the sum of the second column of the set of partitions of 6 is 35 - 16 = 19 and equals the number of 1's in all partitions of 6, so the 6th term of this sequence is a(5) = 19.
(End)
From _Gus Wiseman_, Oct 26 2018: (Start)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose greatest part is > n:
(2) (4) (6) (8) (A) (C)
(31) (42) (53) (64) (75)
(51) (62) (73) (84)
(411) (71) (82) (93)
(521) (91) (A2)
(611) (622) (B1)
(5111) (631) (732)
(721) (741)
(811) (822)
(6211) (831)
(7111) (921)
(61111) (A11)
(7221)
(7311)
(8211)
(9111)
(72111)
(81111)
(711111)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose number of parts is > n:
(11) (211) (2211) (22211) (222211) (2222211)
(1111) (3111) (32111) (322111) (3222111)
(21111) (41111) (331111) (3321111)
(111111) (221111) (421111) (4221111)
(311111) (511111) (4311111)
(2111111) (2221111) (5211111)
(11111111) (3211111) (6111111)
(4111111) (22221111)
(22111111) (32211111)
(31111111) (33111111)
(211111111) (42111111)
(1111111111) (51111111)
(222111111)
(321111111)
(411111111)
(2211111111)
(3111111111)
(21111111111)
(111111111111)
(End)
From _Joerg Arndt_, Jan 01 2024: (Start)
The a(5) = 19 multiset partitions of the multiset {1^5, 2^1} are:
1: {{1, 1, 1, 1, 1, 2}}
2: {{1, 1, 1, 1, 1}, {2}}
3: {{1, 1, 1, 1, 2}, {1}}
4: {{1, 1, 1, 1}, {1, 2}}
5: {{1, 1, 1, 1}, {1}, {2}}
6: {{1, 1, 1, 2}, {1, 1}}
7: {{1, 1, 1, 2}, {1}, {1}}
8: {{1, 1, 1}, {1, 1, 2}}
9: {{1, 1, 1}, {1, 1}, {2}}
10: {{1, 1, 1}, {1, 2}, {1}}
11: {{1, 1, 1}, {1}, {1}, {2}}
12: {{1, 1, 2}, {1, 1}, {1}}
13: {{1, 1, 2}, {1}, {1}, {1}}
14: {{1, 1}, {1, 1}, {1, 2}}
15: {{1, 1}, {1, 1}, {1}, {2}}
16: {{1, 1}, {1, 2}, {1}, {1}}
17: {{1, 1}, {1}, {1}, {1}, {2}}
18: {{1, 2}, {1}, {1}, {1}, {1}}
19: {{1}, {1}, {1}, {1}, {1}, {2}}
(End)
- H. Gupta, An asymptotic formula in partitions. J. Indian Math. Soc., (N. S.) 10 (1946), 73-76.
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 6.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
- A. M. Odlyzko, Asymptotic Enumeration Methods, p. 19
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stanley, R. P., Exercise 1.26 in Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 59, 1999.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- P. A. Baikov and S. V. Mikhailov, The {beta}-expansion for Adler function, Bjorken Sum Rule, and the Crewther-Broadhurst-Kataev relation at order O(alpha_s^4), J. High Energy Phys. 09 (2022) Art. No. 185. See also arXiv:2206.14063 [hep-ph], 2022.
- Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
- David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
- Philip Boalch, Counting the fission trees and nonabelian Hodge graphs, arXiv:2410.23358 [math.AG], 2024. See p. 15.
- L. Bracci and L. E. Picasso, A simple iterative method to write the terms of any order of perturbation theory in quantum mechanics, The European Physical Journal Plus, 127 (2012), Article 119. - From _N. J. A. Sloane_, Dec 31 2012
- Emmanuel Briand, Samuel A. Lopes, and Mercedes Rosas, Normally ordered forms of powers of differential operators and their combinatorics, arXiv:1811.00857 [math.CO], 2018.
- C. C. Cadogan, On partly ordered partitions of a positive integer, Fib. Quart., 9 (1971), 329-336.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers, National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956. (Annotated scanned pages from, plus a review)
- Philip Cuthbertson, Fixed hooks in arbitrary columns of partitions, Integers (2025) Vol. 25, Art. No. A28. See p. 3.
- Mario De Salvo, Dario Fasino, Domenico Freni and Giovanni Lo Faro, A Family of 0-Simple Semihypergroups Related to Sequence A000070, Journal of Multiple-Valued Logic & Soft Computing, 2016, Vol. 27, Issue 5/6, pp. 553-572.
- Mario De Salvo, Dario Fasino, Domenico Freni, and Giovanni Lo Faro, Semihypergroups Obtained by Merging of 0-semigroups with Groups, Filomat 32(12) (2018), 4177-4194.
- P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experimental Mathematics, 7(1) (1998), 15-35.
- D. Frank, C. D. Savage and J. A. Sellers, On the Number of Graphical Forest Partitions, Ars Combinatoria, Vol. 65 (2002), 33-37.
- D. Frank, C. D. Savage and J. A. Sellers, On the Number of Graphical Forest Partitions, preprint.
- Manosij Ghosh Dastidar and Sourav Sen Gupta, Generalization of a few results in Integer Partitions, arXiv preprint arXiv:1111.0094 [cs.DM], 2011.
- Petros Hadjicostas, Cyclic, Dihedral and Symmetrical Carlitz Compositions of a Positive Integer, Journal of Integer Sequences, 20 (2017), Article #17.8.5.
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- M. D. Hirschhorn, The number of 1's in the partitions of n, Fib. Quart., 51 (2013), 326-329.
- M. D. Hirschhorn, The number of different parts in the partitions of n, Fib. Quart., 52 (2014), 10-15. See p. 11. - _N. J. A. Sloane_, Mar 25 2014
- Nick Hobson, Solution to puzzle 56: Partition identity
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 113.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 126.
- MathOverflow, Number of branches between two layers of the Young's lattice, Sep 19 2021.
- Mikhailov, S. V. On a realization of beta-expansion in QCD, J. High Energy Phys. 2017, No. 4, Paper No. 169, 16 p. (2017).
- M. M. Mogbonju, O. A. Ojo, and I. A. Ogunleke, Graphical Representation of Conjugacy Classes in the Order-Preserving Partial One-One Transformation Semigroup, International Journal of Science and Research (IJSR), 3(12) (2014), 711-721.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- F. Ruskey, Combinatorial Object Server.
- Maria Schuld, Kamil Brádler, Robert Israel, Daiqin Su, and Brajesh Gupt, A quantum hardware-induced graph kernel based on Gaussian Boson Sampling, arXiv:1905.12646 [quant-ph], 2019.
- N. J. A. Sloane, Transforms
- I. J. Ugbene, E. O. Eze, and S. O. Makanjuola, On the Number of Conjugacy Classes in the Injective Order-Decreasing Transformation Semigroup, Pacific Journal of Science and Technology, 14(1) (2013), 182-186.
- Ifeanyichukwu Jeff Ugbene, Gatta Naimat Bakare, and Garba Risqot Ibrahim, Conjugacy classes of the order-preserving and order-decreasing partial one-to-one transformation semigroups, Journal of Science, Technology, Mathematics and Education (JOSTMED), 15(2) (2019), 83-88.
- Joseph Vandehey, Digital problems in the theory of partitions, Integers (2024) Vol. 24A, Art. No. A18. See p. 3.
- Eric Weisstein's World of Mathematics, Stanley's Theorem.
Cf.
A014153,
A024786,
A026794,
A026905,
A058884,
A093694,
A133735,
A137633,
A010815,
A027293,
A035363,
A028310,
A000712,
A000990.
-
List([0..45],n->Sum([0..n],k->NrPartitions(k))); # Muniru A Asiru, Jul 25 2018
-
a000070 = p a028310_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Nov 06 2012
-
with(combinat): a:=n->add(numbpart(j),j=0..n): seq(a(n), n=0..44); # Zerinvary Lajos, Aug 26 2008
-
CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x] (* Robert G. Wilson v, Jul 13 2004 *)
Table[ Count[ Flatten@ IntegerPartitions@ n, 1], {n, 45}] (* Robert G. Wilson v, Aug 06 2008 *)
Join[{1}, Accumulate[PartitionsP[Range[50]]]+1] (* _Harvey P. Dale, Mar 12 2013 *)
a[ n_] := SeriesCoefficient[ 1 / (1 - x) / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 09 2013 *)
Accumulate[PartitionsP[Range[0,49]]] (* George Beck, Oct 23 2014; typo fixed by Virgile Andreani, Jul 10 2016 *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod(m=1, n, 1 - x^m, 1 + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Nov 08 2002 */
-
x='x+O('x^66); Vec(1/((1-x)*eta(x))) /* Joerg Arndt, May 15 2011 */
-
a(n) = sum(k=0, n, numbpart(k)); \\ Michel Marcus, Sep 16 2016
-
from itertools import accumulate
def A000070iter(n):
L = [0]*n; L[0] = 1
def numpart(n):
S = 0; J = n-1; k = 2
while 0 <= J:
T = L[J]
S = S+T if (k//2)%2 else S-T
J -= k if (k)%2 else k//2
k += 1
return S
for j in range(1, n): L[j] = numpart(j)
return accumulate(L)
print(list(A000070iter(100))) # Peter Luschny, Aug 30 2019
-
# Using function A365676Row. Compare also A365675.
from itertools import accumulate
def A000070List(size: int) -> list[int]:
return [sum(accumulate(reversed(A365676Row(n)))) for n in range(size)]
print(A000070List(45)) # Peter Luschny, Sep 16 2023
-
def A000070_list(leng):
p = [number_of_partitions(n) for n in range(leng)]
return [add(p[:k+1]) for k in range(leng)]
A000070_list(45) # Peter Luschny, Sep 15 2014
A006128
Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.
Original entry on oeis.org
0, 1, 3, 6, 12, 20, 35, 54, 86, 128, 192, 275, 399, 556, 780, 1068, 1463, 1965, 2644, 3498, 4630, 6052, 7899, 10206, 13174, 16851, 21522, 27294, 34545, 43453, 54563, 68135, 84927, 105366, 130462, 160876, 198014, 242812, 297201, 362587, 441546, 536104, 649791, 785437, 947812, 1140945, 1371173, 1644136, 1968379, 2351597, 2805218, 3339869, 3970648, 4712040, 5584141, 6606438, 7805507, 9207637
Offset: 0
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. The total number of parts is 12. On the other hand, the sum of the largest parts of all partitions is 4 + 2 + 3 + 2 + 1 = 12, equaling the total number of parts, so a(4) = 12. - _Omar E. Pol_, Oct 12 2018
- S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Paul Erdős and Joseph Lehner, The distribution of the number of summands in the partitions of a positive integer, Duke Math. J. 8, (1941), 335-345.
- John A. Ewell, Additive evaluation of the divisor function, Fibonacci Quart. 45 (2007), no. 1, 22-25. See Table 1.
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849 [math.CO], 2008; see p.27
- I. Kessler and M. Livingston, The expected number of parts in a partition of n, Monatsh. Math. 81 (1976), no. 3, 203-212.
- I. Kessler and M. Livingston, The expected number of parts in a partition of n, Monatsh. Math. 81 (1976), no. 3, 203-212.
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- Vaclav Kotesovec, Graph - The asymptotic ratio
- Arnold Knopfmacher and Neville Robbins, Identities for the total number of parts in partitions of integers, Util. Math. 67 (2005), 9-18.
- S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- C. L. Mallows & N. J. A. Sloane, Emails, Jun. 1991
- Ljuben Mutafchiev, On the Largest Part Size and Its Multiplicity of a Random Integer Partition, arXiv:1712.03233 [math.PR], 2017.
- Omar E. Pol, Illustration of initial terms
- J. Sandor, D. S. Mitrinovic, B. Crstici, Handbook of Number Theory I, Volume 1, Springer, 2005, p. 495.
- Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
- H. S. Wilf, A unified setting for selection algorithms (II), Annals Discrete Math., 2 (1978), 135-148.
The version for normal multisets is
A001787.
The version for factorizations is
A066637.
A000070 counts partitions with a selected part.
A336875 counts compositions with a selected part.
A339564 counts factorizations with a selected factor.
-
List([0..60],n->Length(Flat(Partitions(n)))); # Muniru A Asiru, Oct 12 2018
-
a006128 = length . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
-
g:= add(n*x^n*mul(1/(1-x^k), k=1..n), n=1..61):
a:= n-> coeff(series(g,x,62),x,n):
seq(a(n), n=0..61);
# second Maple program:
a:= n-> add(combinat[numbpart](n-j)*numtheory[tau](j), j=1..n):
seq(a(n), n=0..61); # Alois P. Heinz, Aug 23 2019
-
a[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; Table[ a[n], {n, 0, 41}]
CoefficientList[ Series[ Sum[n*x^n*Product[1/(1 - x^k), {k, n}], {n, 100}], {x, 0, 100}], x]
a[n_] := Plus @@ Max /@ IntegerPartitions@ n; Array[a, 45] (* Robert G. Wilson v, Apr 12 2011 *)
Join[{0}, ((Log[1 - x] + QPolyGamma[1, x])/(Log[x] QPochhammer[x]) + O[x]^60)[[3]]] (* Vladimir Reshetnikov, Nov 17 2016 *)
Length /@ Table[IntegerPartitions[n] // Flatten, {n, 50}] (* Shouvik Datta, Sep 12 2021 *)
-
f(n)= {local(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]1,i--;s+=i*(v[i]=(n-s)\i));t+=sum(k=1,n,v[k]));t } /* Thomas Baruchel, Nov 07 2005 */
-
a(n) = sum(m=1, n, numdiv(m)*numbpart(n-m)) \\ Michel Marcus, Jul 13 2013
-
from sympy import divisor_count, npartitions
def a(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
A182703
Triangle read by rows: T(n,k) = number of occurrences of k in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 5, 1, 1, 0, 1, 7, 4, 2, 1, 0, 1, 11, 3, 2, 1, 1, 0, 1, 15, 8, 3, 3, 1, 1, 0, 1, 22, 7, 6, 2, 2, 1, 1, 0, 1, 30, 15, 6, 5, 3, 2, 1, 1, 0, 1, 42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1, 56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1
Offset: 1
Illustration of three arrangements of the last section of the set of partitions of 7, or more generally the 7th section of the set of partitions of any integer >= 7:
. _ _ _ _ _ _ _
. (7) (7) |_ _ _ _ |
. (4+3) (4+3) |_ _ _ _|_ |
. (5+2) (5+2) |_ _ _ | |
. (3+2+2) (3+2+2) |_ _ _|_ _|_ |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) |_|
. ----------------
. 19,8,5,3,2,1,1 --> Row 7 of triangle A207031.
. |/|/|/|/|/|/|
. 11,3,2,1,1,0,1 --> Row 7 of this triangle.
.
Note that the "head" of the last section is formed by the partitions of 7 that do not contain 1 as a part. The "tail" is formed by A000041(7-1) parts of size 1. The number of rows (or zones) is A000041(7) = 15. The last section of the set of partitions of 7 contains eleven 1's, three 2's, two 3's, one 4, one 5, there are no 6's and it contains one 7. So, for k = 1..7, row 7 gives: 11, 3, 2, 1, 1, 0, 1.
Triangle begins:
1;
1, 1;
2, 0, 1;
3, 2, 0, 1;
5, 1, 1, 0, 1;
7, 4, 2, 1, 0, 1;
11, 3, 2, 1, 1, 0, 1;
15, 8, 3, 3, 1, 1, 0, 1;
22, 7, 6, 2, 2, 1, 1, 0, 1;
30, 15, 6, 5, 3, 2, 1, 1, 0, 1;
42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1;
56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1;
...
-
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
b:= proc(n,i) option remember; local g;
if n=0 then [1]
elif n<2 or i<2 then [0]
else g:= `if`(i>n, [0], b(n-i, i));
p(p([0$j=2..i, g[1]], b(n, i-1)), g)
fi
end:
h:= proc(n) option remember;
`if`(n=0, 1, b(n, n)[1]+h(n-1))
end:
T:= proc(n) h(n-1), b(n, n)[2..n][] end:
seq(T(n), n=1..20); # Alois P. Heinz, Feb 19 2012
-
p[f_, g_] := Plus @@ PadRight[{f, g}]; b[n_, i_] := b[n, i] = Module[{g}, Which[n == 0, {1}, n<2 || i<2, {0}, True, g = If [i>n, {0}, b[n-i, i]]; p[p[Append[Array[0&, i-1], g[[1]]], b[n, i-1]], g]]]; h[n_] := h[n] = If[n == 0, 1, b[n, n][[1]] + h[n-1]]; t[n_] := {h[n-1], Sequence @@ b[n, n][[2 ;; n]]}; Table[t[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 16 2014, after Alois P. Heinz's Maple code *)
Table[{PartitionsP[n-1]}~Join~Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], k], {k,2,n}], {n,1,12}] // Flatten (* Robert Price, May 15 2020 *)
A181187
Triangle read by rows: T(n,k) = sum of k-th largest elements in all partitions of n.
Original entry on oeis.org
1, 3, 1, 6, 2, 1, 12, 5, 2, 1, 20, 8, 4, 2, 1, 35, 16, 8, 4, 2, 1, 54, 24, 13, 7, 4, 2, 1, 86, 41, 22, 13, 7, 4, 2, 1, 128, 61, 35, 20, 12, 7, 4, 2, 1, 192, 95, 54, 33, 20, 12, 7, 4, 2, 1, 275, 136, 80, 49, 31, 19, 12, 7, 4, 2, 1, 399, 204, 121, 76, 48, 31, 19, 12, 7, 4, 2, 1, 556, 284
Offset: 1
From _Omar E. Pol_, Feb 13 2012: (Start)
Illustration of initial terms. First five rows of triangle as sums of columns from the partitions of the first five positive integers:
.
. 5
. 3+2
. 4 4+1
. 2+2 2+2+1
. 3 3+1 3+1+1
. 2 2+1 2+1+1 2+1+1+1
. 1 1+1 1+1+1 1+1+1+1 1+1+1+1+1
. -------------------------------------
. 1, 3,1, 6,2,1, 12,5,2,1, 20,8,4,2,1 --> This triangle
. | |/| |/|/| |/|/|/| |/|/|/|/|
. 1, 2,1, 4,1,1, 7,3,1,1, 12,4,2,1,1 --> A066633
.
For more information see A207031 and A206563.
...
Triangle begins:
1;
3, 1;
6, 2, 1;
12, 5, 2, 1;
20, 8, 4, 2, 1;
35, 16, 8, 4, 2, 1;
54, 24, 13, 7, 4, 2, 1;
86, 41, 22, 13, 7, 4, 2, 1;
128, 61, 35, 20, 12, 7, 4, 2, 1;
192, 95, 54, 33, 20, 12, 7, 4, 2, 1;
275, 136, 80, 49, 31, 19, 12, 7, 4, 2, 1;
399, 204, 121, 76, 48, 31, 19, 12, 7, 4, 2, 1;
(End)
-
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, n]
else f:= b(n, i-1); g:= `if`(i>n, [0], b(n-i, i));
p(p(f, g), [0$i, g[1]])
fi
end:
T:= proc(n) local j, l, r, t;
l, r, t:= b(n, n), 1, 1;
for j from n to 2 by -1 do t:= t+l[j]; r:=r, t od;
seq([r][1+n-j], j=1..n)
end:
seq(T(n), n=1..14); # Alois P. Heinz, Apr 05 2012
-
Table[Plus @@ (PadRight[ #,n]& /@ IntegerPartitions[n]),{n,16}]
(* Second program: *)
T[n_, n_] = 1; T[n_, k_] /; k, ] = 0; Table[Table[T[n, k], {k, n, 1, -1}] // Accumulate // Reverse, {n, 1, 16}] // Flatten (* Jean-François Alcover, Oct 10 2015, after Omar E. Pol *)
A024786
Number of 2's in all partitions of n.
Original entry on oeis.org
0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 56, 83, 112, 160, 213, 295, 389, 526, 686, 911, 1176, 1538, 1968, 2540, 3223, 4115, 5181, 6551, 8191, 10269, 12756, 15873, 19598, 24222, 29741, 36532, 44624, 54509, 66261, 80524, 97446, 117862, 142029, 171036, 205290, 246211
Offset: 1
From _Omar E. Pol_, Oct 25 2012: (Start)
For n = 7 we have:
--------------------------------------
. Number
Partitions of 7 of 2's
--------------------------------------
7 .............................. 0
4 + 3 .......................... 0
5 + 2 .......................... 1
3 + 2 + 2 ...................... 2
6 + 1 .......................... 0
3 + 3 + 1 ...................... 0
4 + 2 + 1 ...................... 1
2 + 2 + 2 + 1 .................. 3
5 + 1 + 1 ...................... 0
3 + 2 + 1 + 1 .................. 1
4 + 1 + 1 + 1 .................. 0
2 + 2 + 1 + 1 + 1 .............. 2
3 + 1 + 1 + 1 + 1 .............. 0
2 + 1 + 1 + 1 + 1 + 1 .......... 1
1 + 1 + 1 + 1 + 1 + 1 + 1 ...... 0
------------------------------------
. 24 - 13 = 11
.
The difference between the sum of the second column and the sum of the third column of the set of partitions of 7 is 24 - 13 = 11 and equals the number of 2's in all partitions of 7, so a(7) = 11.
(End)
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 184.
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
- David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
- Philip Cuthbertson, Fixed hooks in arbitrary columns of partitions, Integers (2025) Vol. 25, Art. No. A28. See p. 3.
- Manosij Ghosh Dastidar and Sourav Sen Gupta, Generalization of a few results in Integer Partitions, arXiv preprint arXiv:1111.0094 [cs.DM], 2011.
- Emeric Deutsch et al., Problem 11237, Amer. Math. Monthly, 115 (No. 7, 2008), 666-667. [From _Emeric Deutsch_, Aug 13 2008]
- Hung Phuc Hoang and Torsten Mütze, Combinatorial generation via permutation languages. II. Lattice congruences, arXiv:1911.12078 [math.CO], 2019.
- Joseph Vandehey, Digital problems in the theory of partitions, Integers (2024) Vol. 24A, Art. No. A18. See p. 3.
-
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0$2], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+`if`(i=2, g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, May 18 2012
-
Table[ Count[ Flatten[ IntegerPartitions[n]], 2], {n, 1, 50} ]
(* Second program: *)
b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, 0}, f = b[n, i - 1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + If[i == 2, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 22 2015, after Alois P. Heinz *)
Join[{0}, (1/((1 - x^2) QPochhammer[x]) + O[x]^50)[[3]]] (* Vladimir Reshetnikov, Nov 22 2016 *)
Table[Sum[(1 + (-1)^k)/2 * PartitionsP[n-k], {k, 2, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 27 2017 *)
-
from sympy import npartitions
def A024786(n): return sum(npartitions(n-(k<<1)) for k in range(1,(n>>1)+1)) # Chai Wah Wu, Oct 25 2023
A338156
Irregular triangle read by rows in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the divisors of (n - m + 1), with 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 3, 6, 1, 5, 1, 5, 1, 2, 4, 1, 2, 4, 1, 2, 4
Offset: 1
Triangle begins:
[1];
[1,2], [1];
[1,3], [1,2], [1], [1];
[1,2,4], [1,3], [1,2], [1,2], [1], [1], [1];
[1,5], [1,2,4], [1,3], [1,3], [1,2], [1,2], [1,2], [1], [1], [1], [1], [1];
...
For n = 5 the 5th row of A176206 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1] so replacing every term with its divisors we have the 5th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
[1],
-------
[1, 2],
[1],
-------
[1, 3],
[1, 2],
[1],
[1];
----------
[1, 2, 4],
[1, 3],
[1, 2],
[1, 2],
[1],
[1],
[1];
----------
[1, 5],
[1, 2, 4],
[1, 3],
[1, 3],
[1, 2],
[1, 2],
[1, 2],
[1],
[1],
[1],
[1],
[1];
.
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and all parts of all partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the partitions of every positive integer in colexicographic order (cf. A026792, A211992).
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
.
|---|---------|-----|-------|---------|------------|---------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|------------|---------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
----|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| | | | | |/| | |/|/| | |/ |/|/| | |/ | /|/|/| |
| L | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| I | | * | * * | * * * | * * * * | * * * * * |
| N | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| K | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
| | | | | |\| | |\|\| | |\ |\|\| | |\ |\ |\|\| |
| | A206561 | 1 | 4 2 | 9 5 3 | 20 13 7 4 | 35 23 15 9 5 |
|---|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
| |---------|-----|-------|---------|------------|---------------|
| | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| |---------|-----|-------|---------|------------|---------------|
| D | A027750 | | | 1 | 1 2 | 1 3 |
| I | A027750 | | | 1 | 1 2 | 1 3 |
| V |---------|-----|-------|---------|------------|---------------|
| I | A027750 | | | | 1 | 1 2 |
| S | A027750 | | | | 1 | 1 2 |
| O | A027750 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|------------|---------------|
| S | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
|---|---------|-----|-------|---------|------------|---------------|
.
Note that every row in the lower zone lists A027750.
Also the lower zone for every positive integer can be constructed using the first n terms of the partition numbers. For example: for n = 5 we consider the first 5 terms of A000041 (that is [1, 1, 2, 3, 5]) then the 5th slice is formed by a block with the divisors of 5, one block with the divisors of 4, two blocks with the divisors of 3, three blocks with the divisors of 2, and five blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the correspondence between the prism of partitions and its associated tower since the number of parts in all partitions of n is equal to A006128(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts of all partitions of n is equal to A066186(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
The product of row n is
A007870(n).
Row n lists the first n rows of
A336812 (a subsequence).
The number of parts k in row n is
A066633(n,k).
The sum of all parts k in row n is
A138785(n,k).
The number of parts >= k in row n is
A181187(n,k).
The sum of all parts >= k in row n is
A206561(n,k).
The number of parts <= k in row n is
A210947(n,k).
The sum of all parts <= k in row n is
A210948(n,k).
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A127093,
A135010,
A138121,
A176206,
A182703,
A206437,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A245095,
A221649,
A221650,
A237593,
A302246,
A302247,
A336811,
A337209,
A339106,
A339258,
A339278,
A339304,
A340035,
A340061,
A346741.
-
A338156[rowmax_]:=Table[Flatten[Table[ConstantArray[Divisors[n-m],PartitionsP[m]],{m,0,n-1}]],{n,rowmax}];
A338156[10] (* Generates 10 rows *) (* Paolo Xausa, Jan 12 2023 *)
-
A338156(rowmax)=vector(rowmax,n,concat(vector(n,m,concat(vector(numbpart(m-1),i,divisors(n-m+1))))));
A338156(10) \\ Generates 10 rows - Paolo Xausa, Feb 17 2023
A176206
Irregular triangle T(n,k) (n >= 1, k >= 1) read by rows: row n has length A000070(n-1) and every column k gives the positive integers.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3
Offset: 1
Triangle begins:
1;
2, 1;
3, 2, 1, 1;
4, 3, 2, 2, 1, 1, 1;
5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1;
6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, ...
... Extended by _Omar E. Pol_, Nov 23 2020
From _Omar E. Pol_, Jan 25 2020: (Start)
For n = 5, by definition the length of row 5 is A000070(5-1) = A000070(4) = 12, so the row 5 of triangle has 12 terms. Since every column lists the positive integers A000027 so the row 5 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1].
Then we have that the divisors of the numbers of the 5th row are:
.
5th row of triangle -----> 5 4 3 3 2 2 2 1 1 1 1 1
1 2 1 1 1 1 1
1
.
There are twelve 1's, four 2's, two 3's, one 4 and one 5.
In total there are 12 + 4 + 2 + 1 + 1 = 20 divisors.
On the other hand the partitions of 5 are as shown below:
.
. 5
. 3 2
. 4 1
. 2 2 1
. 3 1 1
. 2 1 1 1
. 1 1 1 1 1
.
There are twelve 1's, four 2's, two 3's, one 4 and one 5, as shown also in the 5th row of triangle A066633.
In total there are 12 + 4 + 2 + 1 + 1 = A006128(5) = 20 parts.
Finally in accordance with the conjecture we can see that all divisors of all numbers in the 5th row of the triangle are the same positive integers as all parts of all partitions of 5. (End)
-
Table[Flatten[Table[ConstantArray[n-k,PartitionsP[k]],{k,0,n-1}]],{n,10}] (* Paolo Xausa, May 30 2022 *)
New name, changed offset, edited and more terms from
Omar E. Pol, Nov 22 2020
A336812
Irregular triangle read by rows T(n,k), n >= 1, k >= 1, in which row n is constructed replacing every term of row n of A336811 with its divisors.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 4, 8, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 9, 1, 7, 1, 2, 3, 6
Offset: 1
Triangle begins:
[1];
[1, 2];
[1, 3], [1];
[1, 2, 4], [1, 2], [1];
[1, 5], [1, 3], [1, 2], [1], [1];
[1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1];
...
For n = 6 the 6th row of A336811 is [6, 4, 3, 2, 2, 1, 1] so replacing every term with its divisors we have {[1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1]} the same as the 6th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
-------------
[1],
-------------
[1, 2];
-------------
[1, 3],
[1];
-------------
[1, 2, 4],
[1, 2],
[1];
-------------
[1, 5],
[1, 3],
[1, 2],
[1],
[1];
-------------
[1, 2, 3, 6],
[1, 2, 4],
[1, 3],
[1, 2],
[1, 2],
[1],
[1];
-------------
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and the parts of the last section of the set of partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the last section of the set of partitions of every positive integer.
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
|---|---------|-----|-------|---------|-----------|-------------|---------------|
| n | | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
| | | | | | | | 6 |
| P | | | | | | | 3 3 |
| A | | | | | | | 4 2 |
| R | | | | | | | 2 2 2 |
| T | | | | | | 5 | 1 |
| I | | | | | | 3 2 | 1 |
| T | | | | | 4 | 1 | 1 |
| I | | | | | 2 2 | 1 | 1 |
| O | | | | 3 | 1 | 1 | 1 |
| N | | | 2 | 1 | 1 | 1 | 1 |
| S | | 1 | 1 | 1 | 1 | 1 | 1 |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
|---|---------|-----|-------|---------|-----------|-------------|---------------|
| | A207031 | 1 | 2 1 | 3 1 1 | 6 3 1 1 | 8 3 2 1 1 | 15 8 4 2 1 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| | |/|/|/|/|/| |
| I | A182703 | 1 | 1 1 | 2 0 1 | 3 2 0 1 | 5 1 1 0 1 | 7 4 2 1 0 1 |
| N | | * | * * | * * * | * * * * | * * * * * | * * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 | 1 2 3 4 5 6 |
| | | = | = = | = = = | = = = = | = = = = = | = = = = = = |
| | A207383 | 1 | 1 2 | 2 0 3 | 3 4 0 4 | 5 2 3 0 5 | 7 8 6 4 0 6 |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
|---|---------|-----|-------|---------|-----------|-------------|---------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 | 1 2 3 6 |
| D |---------|-----|-------|---------|-----------|-------------|---------------|
| I | A027750 | | | 1 | 1 2 | 1 3 | 1 2 4 |
| V |---------|-----|-------|---------|-----------|-------------|---------------|
| I | A027750 | | | | 1 | 1 2 | 1 3 |
| S |---------|-----|-------|---------|-----------|-------------|---------------|
| O | A027750 | | | | | 1 | 1 2 |
| R | A027750 | | | | | 1 | 1 2 |
| S |---------|-----|-------|---------|-----------|-------------|---------------|
| | A027750 | | | | | | 1 |
| | A027750 | | | | | | 1 |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
Note that every row in the lower zone lists A027750.
The "section" is the simpler substructure of the set of partitions of n that has this property in the three zones.
Also the lower zone for every positive integer can be constructed using the first n terms of A002865. For example: for n = 6 we consider the first 6 terms of A002865 (that is [1, 0, 1, 1, 2, 2]) and then the 6th slice is formed by a block with the divisors of 6, no block with the divisors of 5, one block with the divisors of 4, one block with the divisors of 3, two blocks with the divisors of 2 and two blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the growth step by step of both the prism of partitions and its associated tower since the number of parts in the last section of the set of partitions of n is equal to A138137(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts in the last section of the set of partitions of n is equal to A138879(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
Companion and subsequence of
A338156.
Cf.
A000041,
A000070,
A002260,
A002865,
A006128,
A024916,
A027750,
A066186,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A187219,
A207031,
A207038,
A207383,
A221529,
A221530,
A221531,
A237593,
A245095,
A221649,
A221650,
A302246,
A302247,
A336811,
A337209,
A339106,
A339258,
A339278,
A339304,
A340035,
A340061,
A350357.
-
A336812[row_]:=Flatten[Table[ConstantArray[Divisors[row-m],PartitionsP[m]-PartitionsP[m-1]],{m,0,row-1}]];
Array[A336812,10] (* Generates 10 rows *) (* Paolo Xausa, Feb 16 2023 *)
A027293
Triangular array given by rows: P(n,k) is the number of partitions of n that contain k as a part.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 3, 2, 1, 1, 7, 5, 3, 2, 1, 1, 11, 7, 5, 3, 2, 1, 1, 15, 11, 7, 5, 3, 2, 1, 1, 22, 15, 11, 7, 5, 3, 2, 1, 1, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1, 77
Offset: 1
The triangle P begins (with offsets 0 it is Pa):
n \ k 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 1 1
3: 2 1 1
4: 3 2 1 1
5: 5 3 2 1 1
6: 7 5 3 2 1 1
7: 11 7 5 3 2 1 1
8: 15 11 7 5 3 2 1 1
9: 22 15 11 7 5 3 2 1 1
10: 30 22 15 11 7 5 3 2 1 1
... reformatted by _Wolfdieter Lang_, Apr 14 2021
-
f[n_] := Block[{t = Flatten[Union /@ IntegerPartitions@n]}, Table[Count[t, i], {i, n}]]; Array[f, 13] // Flatten
t[n_, k_] := PartitionsP[n-k]; Table[t[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 24 2014 *)
Showing 1-10 of 78 results.
Comments