A090344
Number of Motzkin paths of length n with no level steps at odd level.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 23, 47, 102, 221, 493, 1105, 2516, 5763, 13328, 30995, 72556, 170655, 403351, 957135, 2279948, 5449013, 13063596, 31406517, 75701508, 182902337, 442885683, 1074604289, 2612341856, 6361782007, 15518343597, 37912613631, 92758314874
Offset: 0
a(3)=3 because we have HHH, HUD and UDH, where U=(1,1), D=(1,-1) and H=(1,0).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Rui Duarte and António Guedes de Oliveira, Generating functions of lattice paths, Univ. do Porto (Portugal 2023).
-
[(&+[Binomial(n-k, k)*Catalan(k): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2022
-
C:=x->(1-sqrt(1-4*x))/2/x: G:=C(z^2/(1-z))/(1-z): Gser:=series(G,z=0,40): seq(coeff(Gser,z,n),n=0..36);
# second Maple program:
a:= proc(n) option remember; `if`(n<3, (n^2-n+2)/2,
((2*n+2)*a(n-1) -(4*n-6)*a(n-3) +(3*n-4)*a(n-2))/(n+2))
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 17 2013
-
Table[HypergeometricPFQ[{1/2, (1-n)/2, -n/2}, {2, -n}, -16], {n, 0, 40}] (* Jean-François Alcover, Feb 20 2015, after Paul Barry *)
-
{a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))+x^2*A^2+x*O(x^n));polcoeff(A,n)} \\ Paul D. Hanna, Jun 24 2012
-
[sum(binomial(n-k,k)*catalan_number(k) for k in (0..(n//2))) for n in (0..40)] # G. C. Greubel, Jun 15 2022
A009531
Expansion of the e.g.f. sin(x)*(1+x).
Original entry on oeis.org
0, 1, 2, -1, -4, 1, 6, -1, -8, 1, 10, -1, -12, 1, 14, -1, -16, 1, 18, -1, -20, 1, 22, -1, -24, 1, 26, -1, -28, 1, 30, -1, -32, 1, 34, -1, -36, 1, 38, -1, -40, 1, 42, -1, -44, 1, 46, -1, -48, 1, 50, -1, -52, 1, 54, -1, -56, 1, 58, -1, -60, 1, 62, -1, -64, 1, 66, -1, -68, 1, 70, -1, -72, 1, 74, -1, -76, 1, 78, -1, -80
Offset: 0
- Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31.
-
[(((2*n+3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n) div 4)+((2*n-1-(-1)^n) div 2)*(-1)^((6*n+5-(-1)^n) div 4))/2: n in [0..90]]; // Vincenzo Librandi, Jul 19 2015
-
CoefficientList[Series[x*(1+x)^2/(1+x^2)^2, {x, 0, 100}], x] (* Vaclav Kotesovec, Oct 03 2014 *)
-
concat(0, Vec(x*(1+x)^2/(1+x^2)^2 + O(x^80))) \\ Michel Marcus, Oct 03 2014
-
A009531(n) = (((n^(n+1)) % (n+1)) * ((-1)^((n-1)\2))); \\ Antti Karttunen, Nov 02 2017, after Henry Bottomley's formula.
-
A009531(n) = (lift(Mod(n, n+1)^(n+1)) * ((-1)^((n-1)\2))); \\ (like above, but quicker) - Antti Karttunen, Nov 02 2017
A086620
Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^2.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 14, 7, 1, 1, 9, 28, 28, 9, 1, 1, 11, 47, 79, 47, 11, 1, 1, 13, 71, 175, 175, 71, 13, 1, 1, 15, 100, 331, 504, 331, 100, 15, 1, 1, 17, 134, 562, 1196, 1196, 562, 134, 17, 1, 1, 19, 173, 883, 2464, 3514, 2464, 883, 173, 19, 1, 1, 21, 217
Offset: 0
Rows begin:
1,_1,__1,__1,___1,____1,____1,_____1, ...
1,_3,__5,__7,___9,___11,___13,____15, ...
1,_5,_14,_28,__47,___71,__100,___134, ...
1,_7,_28,_79,_175,__331,__562,___883, ...
1,_9,_47,175,_504,_1196,_2464,__4572, ...
1,11,_71,331,1196,_3514,_8764,_19244, ...
1,13,100,562,2464,_8764,26172,_67740, ...
1,15,134,883,4572,19244,67740,204831, ...
A086621
Main diagonal of square table A086620 of coefficients, T(n,k), of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^2.
Original entry on oeis.org
1, 3, 14, 79, 504, 3514, 26172, 204831, 1664696, 13930840, 119312544, 1041227642, 9228614836, 82867255956, 752405060536, 6897376441167, 63760133568096, 593763928313128, 5565678569009328, 52475976165495960, 497376657383374560, 4736680863568248480, 45304174896889357440
Offset: 0
-
re:= sumtools:-sumrecursion(binomial(n,j) * binomial(2*n-j,n) * binomial(2*j,j)/(j+1),j,a(n)); # re = Mathar's recurrence
f:= gfun:-rectoproc({re = 0, a(0)=1, a(1)=3, a(2)=14}, a(n), remember): map(f, [$0..20]); # Georg Fischer, Oct 23 2022
-
a(n) = {sum(j=0, n, binomial(n,j)*binomial(2*n-j, n)*binomial(2*j, j)/(j+1))} \\ Andrew Howroyd, Apr 11 2021
A257178
Number of 3-Motzkin paths of length n with no level steps at odd level.
Original entry on oeis.org
1, 3, 10, 33, 110, 369, 1247, 4245, 14558, 50295, 175029, 613467, 2165100, 7692345, 27504600, 98941185, 357952580, 1301960925, 4759282415, 17478557925, 64468072820, 238736987535, 887359113700, 3309489922743, 12381998910700, 46460457776739
Offset: 0
For n=2 we have 10 paths: H(1)H(1), H(1)H(2), H(1)H(3), H(2)H(1), H(2)H(2), H(2)H(3), H(3)H(1), H(3)H(2), H(3)H(3) and UD.
-
CoefficientList[Series[(1-3*x-Sqrt[(1-3*x)*(1-3*x-4x^2)])/(2*x^2*(1-3*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
-
Vec((1-3*x-sqrt((1-3*x)*(1-3*x-4*x^2)))/(2*x^2*(1-3*x)) + O(x^50)) \\ G. C. Greubel, Feb 05 2017
A257388
Number of 4-Motzkin paths of length n with no level steps at odd level.
Original entry on oeis.org
1, 4, 17, 72, 306, 1304, 5573, 23888, 102702, 442904, 1915978, 8314480, 36195236, 158067312, 692475053, 3043191200, 13415404246, 59321085720, 263100680926, 1170347803440, 5221037429948, 23356788588752, 104772374565666, 471214329434208, 2124649562373708, 9603094073668208
Offset: 0
For n=2 we have 17 paths: H(1)H(1), H(1)H(2), H(1)H(3), H(1)H(4), H(2)H(1), H(2)H(2), H(2)H(3), H(2)H(4), H(3)H(1), H(3)H(2), H(3)H(3), H(3)H(4), H(4)H(1), H(4)H(2), H(4)H(3), H(4)H(4) and UD.
-
CoefficientList[Series[(1-4*x-Sqrt[(1-4*x)*(1-4*x-4*x^2)])/(2*x^2*(1-4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 22 2015 *)
-
x='x+O('x^50); Vec((1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2*(1-4*x))) \\ G. C. Greubel, Apr 08 2017
A257389
Number of 3-generalized Motzkin paths of length n with no level steps H=(3,0) at odd level.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 6, 6, 17, 21, 54, 74, 183, 272, 644, 1025, 2342, 3928, 8734, 15264, 33227, 59989, 128484, 238008, 503563, 952038, 1995955, 3835381, 7987092, 15548654, 32223061, 63388488, 130918071, 259724317, 535168956, 1069025128
Offset: 0
For n=6 we have 6 paths: UDUDUD, H3H3, UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
-
f:= gfun:-rectoproc({(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6), a(0) = 1, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 2},a(n),remember):
map(f, [$0..100]); # Robert Israel, Nov 04 2019
-
a(n):=sum(((-1)^(n-3*k)+1)*((binomial((n-k)/2,k) )*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2))),k,0,(n)/3); /* Vladimir Kruchinin, Apr 02 2016 */
A257515
Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at odd level.
Original entry on oeis.org
1, 0, 1, 2, 2, 4, 9, 12, 26, 48, 90, 172, 348, 664, 1349, 2680, 5438, 10976, 22510, 45900, 94700, 195032, 404442, 838824, 1748308, 3646368, 7632628, 15994232, 33606168, 70699504, 149050669, 314625264, 665280246, 1408436672, 2986069782, 6337988876
Offset: 0
For n=6 we have 9 paths: UDUDUD, H3H3 (4 options), UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
-
CoefficientList[Series[(1-2*x^3-Sqrt[(1-2x^3)*(1-4*x^2-2*x^3)])/(2*x^2*(1-2*x^3)), {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 28 2015 *)
-
a(n):=sum((binomial(2*m,m)/(m+1)*(if mod(n+m,3)=0 then 2^((n-2*m)/3)* binomial((m+n)/3,m) else 0)),m,0,n); /* Vladimir Kruchinin, Mar 07 2016 */
-
seq(n)={Vec((1-2*x^3-sqrt((1-2*x^3)*(1-4*x^2-2*x^3) + O(x^(3+n))))/(2*x^2*(1-2*x^3)))} \\ Andrew Howroyd, May 01 2020
Showing 1-8 of 8 results.
Comments