cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000407 a(n) = (2*n+1)! / n!.

Original entry on oeis.org

1, 6, 60, 840, 15120, 332640, 8648640, 259459200, 8821612800, 335221286400, 14079294028800, 647647525324800, 32382376266240000, 1748648318376960000, 101421602465863680000, 6288139352883548160000, 415017197290314178560000
Offset: 0

Views

Author

Keywords

Comments

The e.g.f. of 1/a(n) = n!/(2*n+1)! is (exp(sqrt(x)) - exp(-sqrt(x)))/(2*sqrt(x)). - Wolfdieter Lang, Jan 09 2012
Product of the larger parts of the partitions of 2n+2 into exactly two parts. - Wesley Ivan Hurt, Jun 15 2013
For n > 0, a(n-1) = (2n-1)!/(n-1)!, the number of ways n people can line up in n labeled queues. The derivation is straightforward. Person 1 has (2n-1) choices - be first in line in one of the queues or get behind one of the other people. Person 2 has (2n-2) choices - choose one of the n queues or get behind one of the remaining n-2 people. Continuing in this fashion, we finally find that person n has to choose one of the n queues. - Dennis P. Walsh, Mar 24 2016
For n > 0, a(n-1) is the number of functions f:[n]->[2n] that are acyclic and injective. Note that f is acyclic if, for all x in [n], x is not a member of the set {f(x),f(f(x)), f(f(f(x))), ...}. - Dennis P. Walsh, Mar 25 2016
a(n) is the number of labeled maximal outerplanar graphs with n-3 vertices. - Allan Bickle, Feb 19 2024

Examples

			G.f. = 1 + 6*x + 60*x^2 + 840*x^3 + 15120*x^4 + 332640*x^5 + 8648640*x^6 + ...
For n=1 the a(1)=6 ways for 2 people to line up in 2 queues are as follows: Q1<P1,P2> Q2<>, Q1<P2,P1> Q2<>, Q1<P1> Q2<P2>, Q1<P2> Q2<P1>, Q1<> Q2<P1,P2>, Q1<> Q2<P2,P1>. - _Dennis P. Walsh_, Mar 24 2016
For the unique maximal outerplanar graph with 4 vertices, there are C(4,2)=6 ways to label the two degree 3 vertices, and the other two labels are forced.  Thus a(1) = 6.
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted with a slightly different title in Math. Annalen, 191 (1971), 87-98.
  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • Loren C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A100622 is the "Number of topologically distinct solutions to the clone ordering problem for n clones" without the restriction that they be in a single contig (see [Newberg] for definition of contig).
Column m=0 of A292219.

Programs

  • Magma
    [Factorial(2*n+1) / Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jun 16 2015
  • Maple
    For Maple program see A000903.
    a := n -> pochhammer(n+1,n+1); (for n>=0) # Peter Luschny, Feb 14 2009
  • Mathematica
    Table[(2n + 1)!/n!, {n, 0, 30}] (* Stefan Steinerberger, Apr 08 2006 *)
    a[ n_] := If[ n < 0, 1/2, 1] Pochhammer[ n + 1, n + 1]; (* Michael Somos, Jan 03 2015 *)
    a[ n_] := Which[ n < -1, -(-1)^n / (4 a[-n - 2]), n == -1, 1/2, True, (2 n + 1)! / n!]; (* Michael Somos, Jan 03 2015 *)
  • Maxima
    A000407(n):=(2*n+1)!/n!$
    makelist(A000407(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=(2*n+1)!/n! \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    {a(n) = if( n<-1, -(-1)^n / (4 * a(-n-2)), n==-1, 1/2, (2*n + 1)! / n!)}; /* Michael Somos, Jan 03 2015 */
    

Formula

E.g.f.: (1 - 4*x)^(-3/2). - Michael Somos, Jan 03 2015
E.g.f.: Sum_{k>=0} a(k+2) * x^k / k! = (1 - 2*x - sqrt(1 - 4*x)) / 4.
E.g.f. for a(n-1), n >= 0, with a(-1) := 0 is (-1+1/(1-4*x)^(1/2))/2. 2*a(n) = (4*n+2)(!^4) := Product_{j=0..n} (4*j + 2), (one half of 4-factorial numbers). - Wolfdieter Lang
a(n) = C(n+1)*(n+2)!/2 for all n>=0. - Paul Barry, Feb 16 2005
For n>1, a(n) = (1/2)*A001813(n+1). - Zerinvary Lajos, Jun 06 2007
For asymptotics see the Robinson paper.
Sum_{n >=0} n!/a(n) = 2*Pi/3^(3/2) = 1.2091995761... = A248897 [Jolley eq 261]
G.f.: 1 / (1 - 6*x / (1 - 4*x / (1 - 10*x / (1 - 8*x / (1 - 14*x / ... ))))). - Michael Somos, May 12 2012
G.f.: 1/Q(0), where Q(k) = 1 + 2*(2*k-1)*x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
a(n) = -(-1)^n / (4 * a(-2-n)) = a(n-1) * (4*n+2) for all n in Z. - Michael Somos, Jan 03 2015
a(n) = A087299(2*n + 1). - Michael Somos, Jan 03 2015
From Peter Bala, Feb 16 2015: (Start)
Recurrence equation: a(n) = 4*a(n-1) + 4*(2*n - 1)^2*a(n-2) with a(0) = 1 and a(1) = 6.
The integer sequence b(n) := a(n)*Sum_{k = 0..n} (-1)^k/(2*k + 1), beginning [1, 4, 52, 608, 12624, ...], satisfies the same second-order recurrence equation. This leads to Brouncker's generalized continued fraction expansion Sum_{k >= 0} (-1)^k/(2*k + 1) = Pi/4 = 1/(1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... )))). Note b(n) = 2^n*A024199(n+1).
Recurrence equation: a(n) = (5*n + 2)*a(n-1) - 2*n*(2*n - 1)^2*a(n-2) with a(0) = 1 and a(1) = 6.
The integer sequence c(n) := a(n)*Sum_{k = 0..n} k!^2/(2*k + 1)!, beginning [1, 7, 72, 1014, 18276, ... ], satisfies the same second-order recurrence equation. This leads to the generalized continued fraction expansion Sum_{k >= 0} k!^2/(2*k + 1)! = 2*Pi/sqrt(27) = 2*A073010 = 1/(1 - 1/(7 - 12/(12 - 30/(17 - ... - 2*n*(2*n - 1)/((5*n + 2) - ... ))))). (End)
a(n) = Product_{k=n+1..(2*n+1)} k. - Carlos Eduardo Olivieri, Jun 03 2015
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 2^(2*n+3/2)*n^(n+1)/exp(n).
Sum_{n>=0} 1/a(n) = exp(1/4)*sqrt(Pi)*erf(1/2) = 1.184593072938653151..., where erf() is the error function. (End)
Sum_{n>=0} (-1)^n/a(n) = exp(-1/4)*sqrt(Pi)*erfi(1/2), where erfi() is the imaginary error function. - Amiram Eldar, Jan 18 2021
It follows from the comments above that we have a(n) = a(n-1)*(4*n+2), with a(1) = 6, a(0) = 1.
a(n) = A081125(2*n+1). - R. J. Mathar, Jun 07 2025

A047053 a(n) = 4^n * n!.

Original entry on oeis.org

1, 4, 32, 384, 6144, 122880, 2949120, 82575360, 2642411520, 95126814720, 3805072588800, 167423193907200, 8036313307545600, 417888291992371200, 23401744351572787200, 1404104661094367232000, 89862698310039502848000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Original name was "Quadruple factorial numbers".
For n >= 1, a(n) is the order of the wreath product of the cyclic group C_4 and the symmetric group S_n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
Number of n X n monomial matrices with entries 0, +/-1, +/-i.
a(n) is the product of the positive integers <= 4*n that are multiples of 4. - Peter Luschny, Jun 23 2011
Also, a(n) is the number of signed permutations of length 2*n that are equal to their reverse-complements. (See the Hardt and Troyka reference.) - Justin M. Troyka, Aug 13 2011.
Pi^n/a(n) is the volume of a 2*n-dimensional ball with radius 1/2. - Peter Luschny, Jul 24 2012
Equals the first right hand column of A167557, and also equals the first right hand column of A167569. - Johannes W. Meijer, Nov 12 2009
a(n) is the order of the group U_n(Z[i]) = {A in M_n(Z[i]): A*A^H = I_n}, the group of n X n unitary matrices over the Gaussian integers. Here A^H is the conjugate transpose of A. - Jianing Song, Mar 29 2021

Examples

			G.f. = 1 + 4*x + 32*x^2 + 384*x^3 + 6144*x^4 + 122880*x^5 + 2949120*x^6 + ...
		

Crossrefs

a(n)= A051142(n+1, 0) (first column of triangle).

Programs

  • Magma
    [4^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jul 20 2011
  • Maple
    A047053:= n -> mul(k, k = select(k-> k mod 4 = 0, [$1..4*n])): seq(A047053(n), n = 0.. 16); # Peter Luschny, Jun 23 2011
  • Mathematica
    a[n_]:= With[{m=2n}, If[ m<0, 0, m!*SeriesCoefficient[1 +Sqrt[Pi]*x*Exp[x^2]*Erf[x], {x, 0, m}]]]; (* Michael Somos, Jan 03 2015 *)
    Table[4^n n!,{n,0,20}] (* Harvey P. Dale, Sep 19 2021 *)
  • PARI
    a(n)=4^n*n!;
    

Formula

a(n) = 4^n * n!.
E.g.f.: 1/(1 - 4*x).
Integral representation as the n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x/4)/4, n >= 0. This representation is unique. - Karol A. Penson, Jan 28 2002 [corrected by Jason Yuen, May 04 2025]
Sum_{k>=0} (-1)^k/(2*k + 1)^n = (-1)^n * n * (PolyGamma[n-1, 1/4] - PolyGamma[n-1, 3/4]) / a(n) for n > 0. - Joseph Biberstine (jrbibers(AT)indiana.edu), Jul 27 2006
a(n) = Sum_{k=0..n} C(n,k)*(2k)!*(2(n-k))!/(k!(n-k)!) = Sum_{k=0..n} C(n,k)*A001813(k)*A001813(n-k). - Paul Barry, May 04 2007
E.g.f.: With interpolated zeros, 1 + sqrt(Pi)*x*exp(x^2)*erf(x). - Paul Barry, Apr 10 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = sum of top row terms of M^n, M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
... (End)
G.f.: 1/(1 - 4*x/(1 - 4*x/(1 - 8*x/(1 - 8*x/(1 - 12*x/(1 - 12*x/(1 - 16*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 08 2012
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 8*x*(k + 1)/(8*x*(k + 1) - 1 + 8*x*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: 1/Q(0), where Q(k) = 1 - 4*x*(2*k + 1) - 16*x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
a(n) = A000142(n) * A000302(n). - Michel Marcus, Nov 28 2013
a(n) = A087299(2*n). - Michael Somos, Jan 03 2015
D-finite with recurrence: a(n) - 4*n*a(n-1) = 0. - R. J. Mathar, Jan 27 2020
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/4) (A092042).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/4) (A092616). (End)

Extensions

Edited by Karol A. Penson, Jan 22 2002

A249074 Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 4, 1, 6, 4, 1, 32, 14, 4, 1, 60, 72, 24, 4, 1, 384, 228, 120, 36, 4, 1, 840, 1392, 564, 176, 50, 4, 1, 6144, 4488, 3312, 1140, 240, 66, 4, 1, 15120, 31200, 14640, 6480, 2040, 312, 84, 4, 1, 122880, 104880, 97440, 37440, 11280, 3360, 392, 104, 4, 1, 332640
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 2*(n+1)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A249075(n) for n >= 0.
(n-th term of column 1) = A087299(n) for n >= 1.

Examples

			f(0,x) = 1/1, so that p(0,x) = 1;
f(1,x) = (4 + x)/1, so that p(1,x) = 4 + x;
f(2,x) = (6 + 4*x + x^2)/(4 + x), so that p(2,x) = 6 + 4*x + x^2.
First 6 rows of the triangle of coefficients:
  1
  4    1
  6    4    1
  32   14   4    1
  60   72   24   4    1
  384  228  120  36   4   1
		

Crossrefs

Programs

  • Mathematica
    z = 11; p[x_, n_] := x + 2 n/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249074 array *)
    Flatten[CoefficientList[u, x]] (* A249074 sequence *)
    v = u /. x -> 1  (* A249075 *)
    u /. x -> 0      (* A087299 *)

A249100 Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 21, 12, 3, 1, 45, 48, 21, 3, 1, 231, 177, 81, 32, 3, 1, 585, 855, 450, 120, 45, 3, 1, 3465, 3240, 2070, 930, 165, 60, 3, 1, 9945, 18000, 10890, 4110, 1695, 216, 77, 3, 1, 65835, 71505, 57330, 28560, 7245, 2835, 273, 96, 3, 1, 208845, 443835, 300195, 143640, 64155, 11781, 4452, 336, 117, 3, 1
Offset: 0

Views

Author

Clark Kimberling, Oct 21 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (2*n+1)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A249101(n) for n >= 0.
(n-th term of column 1) = A235136(n) for n >= 1.

Examples

			f(0,x) = 1/1, so that p(0,x) = 1;
f(1,x) = (3 + x)/1, so that p(1,x) = 3 + x;
f(2,x) = (5 + 3*x + x^2)/(3 + x), so that p(2,x) = 5 + 3*x + x^2.
First 6 rows of the triangle of coefficients:
    1;
    3,   1;
    5,   3,   1;
   21,  12,   3,   1;
   45,  48,  21,   3,   1;
  231, 177,  81,  32,   3,   1;
		

Crossrefs

Programs

  • Mathematica
    z = 11; p[x_, n_] := x + (2 n - 1)/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249100 array *)
    Flatten[CoefficientList[u, x]] (* A249100 sequence *)
    v = u /. x -> 1  (* A249101 *)
    u /. x -> 0  (* A235136 *)
    T[ n_Integer, k_Integer] := (T[n, k] = If[n<2, Boole[0==k], T[n-1, k-1] + (2*n-1)*T[n-2 ,k] ]); Join @@ Table[T[n, k], {n, 10}, {k, 0, n-1}] (* Michael Somos, Oct 27 2022 *)

Formula

T(n, k) = T(n-1, k-1) + (2*n-1)*T(n-2, k). - Michael Somos, Oct 27 2022

A320428 Continued fraction expansion of exp(Pi/4).

Original entry on oeis.org

2, 5, 5, 1, 3, 25, 1, 1, 17, 1, 3, 3, 1, 12, 1, 8, 5, 3, 1, 46, 3, 4, 12, 1, 5, 22, 3, 2, 1, 7, 4, 2, 1, 13, 13, 8, 1, 1, 3, 1, 1, 1, 2, 1, 11, 1, 5, 2, 1, 4, 7, 1, 71, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 6, 1, 9, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 2, 1, 2, 10, 1, 19, 2, 2, 4, 1
Offset: 0

Views

Author

Grant T Sanderson, Aug 28 2019

Keywords

Comments

This value arises naturally by taking the ratio of the volume of a unit 2n-dimensional ball to the volume of the 2n-dimensional cube containing it (with side length 2) and summing over all n.

Crossrefs

Cf. A160510 (decimal expansion), A058287, A087299, A329912 (Engel expansion).

Programs

  • Mathematica
    ContinuedFraction[Exp[Pi/4], 100]
  • PARI
    contfrac(exp(Pi/4)) \\ Felix Fröhlich, Aug 28 2019

A094941 a(n) is n! times the coefficient of Pi^floor(n/2) in the volume of an n-dimensional unit ball.

Original entry on oeis.org

1, 2, 2, 8, 12, 64, 120, 768, 1680, 12288, 30240, 245760, 665280, 5898240, 17297280, 165150720, 518918400, 5284823040, 17643225600, 190253629440, 670442572800, 7610145177600, 28158588057600, 334846387814400, 1295295050649600
Offset: 0

Views

Author

Michael Somos, May 24 2004

Keywords

Examples

			The volume of a sphere is (4/3)*Pi*r^3 so a(3) = 3!*4/3 = 8.
G.f. = 1 + 2*x + 2*x^2 + 8*x^3 + 12*x^4 + 64*x^5 + 120*x^6 + 768*x^7 + ...
		

Crossrefs

Cf. A087299.

Programs

  • Mathematica
    Join[{1}, Table[If[OddQ[n], 2^n ((n - 1)/2)!, 2(n - 1)!/((n/2 - 1)!)], {n, 1, 25}]] (* Robert A. Russell, May 07 2006 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[x^2] (1 + Sqrt[Pi] Erf[x]), {x, 0, n}]] (* Michael Somos, Jan 24 2014 *)
    a[ n_] := If[ n < 1, Boole[n == 0], If[ OddQ[n], 2^n ((n - 1)/2)!, 2 (n - 1)! / ((n/2 - 1)!)]] (* Michael Somos, Jan 24 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = exp(x^2 + x * O(x^n)); n! * polcoeff( A * (1 + 2*intformal( 1/A)), n))}

Formula

E.g.f.: exp(-x^2)*(1 + 2*Integral_{t=0..x} exp(-t^2) dt).
E.g.f. A(x) satisfies A'(x) = 2+2*x*A(x), A(0)=1.
a(n) = (2*n - 2) * a(n-2), if n>1.
a(n) * a(n+1) = n! * 2^(n+1).
a(n) = Pi^floor((n+1)/2)*Integral_{x>=0} (x^n*exp(-Pi*x^2/4)). - Paul Barry, Mar 01 2011
a(n+1) = 2*n*a(n-1); a(2n) = (2n)!/n! = A001813(n); a(2n+1) = 2^(2n+1)*n! = 2*A047053(n) = A098560(n) for n>0. - Henry Bottomley, Jun 03 2011
0 = a(n)*(2*a(n+1) - a(n+3)) + a(n+1)*a(n+2) if n>=0. - Michael Somos, Jan 24 2014; corrected by Georg Fischer, Jun 02 2021
Showing 1-6 of 6 results.