cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A077374 Odd numbers m whose abundance by absolute value is at most 10, that is, -10 <= sigma(m) - 2m <= 10.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 21, 315, 1155, 8925, 32445, 442365, 815634435
Offset: 1

Views

Author

Jason Earls, Nov 30 2002

Keywords

Comments

Apart from {1, 3, 5, 7, 9, 11, 15, 21, 315}, subset of A088012. Probably finite. - Charles R Greathouse IV, Mar 28 2011
a(15) > 10^13. - Giovanni Resta, Mar 29 2013
The abundance of the given terms a(1..14) is: (-1, -2, -4, -6, -5, -10, -6, -10, -6, -6, 6, 6, 6, -6). See also A171929, A188263 and A188597 for numbers with abundancy sigma(n)/n close to 2. - M. F. Hasler, Feb 21 2017
a(15) > 10^22. - Wenjie Fang, Jul 13 2017

Examples

			sigma(32445) = 64896 and 32445*2 = 64890, which makes the odd number 32445 six away from perfection: A(32445) = 6 and hence in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6, 2], -10 <= DivisorSigma[1, #] - 2 # <= 10 &] (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    forstep(n=1,442365,2,if(abs(sigma(n)-2*n)<=10,print1(n,",")))

Extensions

a(14) from Farideh Firoozbakht, Jan 12 2004

A088833 Numbers n whose abundance is 8: sigma(n) - 2n = 8.

Original entry on oeis.org

56, 368, 836, 11096, 17816, 45356, 77744, 91388, 128768, 254012, 388076, 2087936, 2291936, 13174976, 29465852, 35021696, 45335936, 120888092, 260378492, 381236216, 775397948, 3381872252, 4856970752, 6800228816, 8589344768, 44257207676, 114141404156
Offset: 1

Views

Author

Labos Elemer, Oct 28 2003

Keywords

Comments

A subset of A045770.
If p=2^m-9 is prime (m is in the sequence A059610) then n=2^(m-1)*p is in the sequence. See comment lines of the sequence A088831. 56, 368, 128768, 2087936 & 8589344768 are of the mentioned form. - Farideh Firoozbakht, Feb 15 2008
a(28) > 10^12. - Donovan Johnson, Dec 08 2011
a(31) > 10^13. - Giovanni Resta, Mar 29 2013
a(38) > 10^18. - Hiroaki Yamanouchi, Aug 23 2018
Any term x of this sequence can be combined with any term y of A125247 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			Except first 4 terms of A045770 (1, 7, 10, and 49) are here: abundances = {-1,-6,-2,-41,8,8,8,8,8,8,8,8,8,8,8,8,8}.
		

Crossrefs

Programs

Extensions

a(14)-a(17) from Farideh Firoozbakht, Feb 15 2008
a(18)-a(25) from Donovan Johnson, Dec 23 2008
a(26)-a(27) from Donovan Johnson, Dec 08 2011

A125246 Numbers m whose abundance sigma(m) - 2m = -4. Numbers whose deficiency is 4.

Original entry on oeis.org

5, 14, 44, 110, 152, 884, 2144, 8384, 18632, 116624, 8394752, 15370304, 73995392, 536920064, 2147581952, 34360131584, 27034175140420610, 36028797421617152, 576460753914036224
Offset: 1

Views

Author

Jason G. Wurtzel, Nov 25 2006

Keywords

Comments

a(17) > 10^12. - Donovan Johnson, Dec 08 2011
a(17) > 10^13. - Giovanni Resta, Mar 29 2013
a(17) <= b(28) = 36028797421617152 ~ 3.6*10^16, since b(k) := 2^(k-1)*(2^k+3) is in this sequence for all k in A057732, i.e., whenever 2^k+3 is prime, and 28 = A057732(11). Further terms of this form are b(30), b(55), b(67), b(84), ... The only terms not of the form b(k), below 10^13, are {110, 884, 18632, 116624, 15370304, 73995392}. - M. F. Hasler, Apr 27 2015, edited on Jul 17 2016
See A191363 for numbers with deficiency 2, and A141548 for numbers with deficiency 6. - M. F. Hasler, Jun 29 2016 and Jul 17 2016
A term of this sequence multiplied with a prime p not dividing it is abundant if and only if p < sigma(a(n))/4. For each of a(2..16) there is such a prime, near this limit, such that a(n)*p is a primitive weird number, cf. A002975. - M. F. Hasler, Jul 17 2016
Any term x of this sequence can be combined with any term y of A088832 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
Is 5 the only odd number in this sequence? Is it possible to prove this? - M. F. Hasler, Feb 22 2017
a(20) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
If m is an even term, then (m-2)/2 is a term of A067680. - Jinyuan Wang, Apr 08 2020

Examples

			The abundance of 5 = (1+5)-10 = -4.
More generally, whenever p = 2^k + 3 is prime (as p = 5 for k = 1), then A(2^(k-1)*p) = (2^k-1)*(p+1) - 2^k*p = 2^k - p - 1 = -4.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -4]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    Select[Range[10^7], DivisorSigma[1, #] - 2 # == -4 &] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    for(n=1,1000000,if(((sigma(n)-2*n)==-4),print1(n,",")))
    

Extensions

a(11) to a(14) from Klaus Brockhaus, Nov 29 2006
a(15)-a(16) from Donovan Johnson, Dec 23 2008
a(17)-a(19) from Hiroaki Yamanouchi, Aug 21 2018

A067702 Numbers k such that sigma(k) == 0 (mod k+2).

Original entry on oeis.org

12, 70, 88, 180, 1888, 4030, 5830, 32128, 521728, 1848964, 8378368, 34359083008, 66072609790, 549753192448, 259708613909470, 2251799645913088
Offset: 1

Views

Author

Benoit Cloitre, Feb 05 2002

Keywords

Comments

If 2^i-5 is prime for i > 2 then let x = (2^i-5)*2^(i-1). Then sigma(x)=2*(x+2), so x is in the sequence. There are other terms that are not of this form. - Jud McCranie, Jan 12 2019
Contains terms of A088832, terms m of A088834 with (sigma(m)-6)/m = 3, terms m of A045770 with (sigma(m)-8)/m = 4, terms m of A076496 with (sigma(m)-12)/m = 6. - Max Alekseyev, May 26 2025

Examples

			sigma(180) = 546 = 3(180+2), so 180 is in the sequence.
		

Crossrefs

Contains subsequence A088832.

Programs

  • Mathematica
    Select[Range[84*10^5],Divisible[DivisorSigma[1,#],#+2]&] (* Harvey P. Dale, May 11 2018 *)
  • PARI
    isok(n) = sigma(n) % (n+2) == 0; \\ Michel Marcus, Nov 22 2013

Extensions

a(9)-a(11) from Michel Marcus, Nov 22 2013
a(12)-a(13) from Jud McCranie, Jan 12 2019
a(14) from Jud McCranie, Jan 13 2019
a(15) from Jud McCranie, Dec 02 2019
a(16) from Max Alekseyev, May 26 2025

A258885 Primitive weird numbers (A002975) having 6 distinct prime factors.

Original entry on oeis.org

1550860550, 44257207676, 66072609790
Offset: 1

Views

Author

Keywords

Comments

a(4) <= 5976833582079328 = 2^5*181*197*353*431*34429 and a(5) <= 48083019473926272314825065088 = 2^7*257*97213*97973*100957*1520132521 that is certainly in this sequence. - Giuseppe Melfi, Oct 26 2015
a(4) <= 125258675788784 = 2^4 * 47 * 149 * 353 * 1307 * 2423. - M. F. Hasler, Jul 12 2016

Examples

			a(1) = 1550860550 = 2 * 5^2 * 29 * 37 * 137 * 211 = A273815(1). (Abundance = 20)
a(2) = 44257207676 = 2^2 * 11 * 37 * 59 * 523 * 881. (Abundance = 8, cf. A088833)
a(3) = 66072609790 = 2 * 5 * 11 * 127^2 * 167 * 223 = A273815(3). (Abundance = 4, cf. A088832)
		

Crossrefs

Programs

  • Mathematica
    (* copy the terms from A002975, assign them to 'lst' and then *)
    Select[ lst, PrimeNu@# == 6 &]
  • PARI
    select(w->omega(w)==6, A002975) \\ Assuming that A002975 is defined as set or vector. - M. F. Hasler, Jul 12 2016

Extensions

One more term added and definition corrected by Giuseppe Melfi, Nov 02 2015

A045769 Numbers k such that sigma(k) == 4 (mod k).

Original entry on oeis.org

1, 3, 9, 12, 70, 88, 1888, 4030, 5830, 32128, 521728, 1848964, 8378368, 34359083008, 66072609790, 549753192448, 259708613909470, 2251799645913088, 9223372026117357568
Offset: 1

Views

Author

Keywords

Comments

Every number of the form 2^(j-1)*(2^j - 5), where 2^j - 5 is prime, is a term. See A059608. - Jon E. Schoenfield, Jun 02 2019

Crossrefs

Contains subsequence A088832.

Programs

  • PARI
    isok(k) = Mod(sigma(k), k) == 4; \\ Michel Marcus, Jan 04 2023

Extensions

a(13) from Harvey P. Dale, Mar 20 2011
Initial term 1 inserted and a(14)-a(16) from Donovan Johnson, Mar 01 2012
Term 3 inserted by Michel Marcus, Jan 04 2023
a(18) from Jon E. Schoenfield confirmed, and a(17), a(19) added by Max Alekseyev, Jun 08 2025

A275996 Numbers n whose abundance is 64: sigma(n) - 2n = 64.

Original entry on oeis.org

108, 220, 6808, 8968, 14008, 24448, 66928, 552568, 786208, 1020568, 5303488, 8229568, 10001848, 133685248, 499722448, 2608895488, 4733164768, 7163795488, 13707973408, 14468025568, 16122444736, 27339731968, 34351218688, 34672397728, 35371084288, 69657461248
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 16 2016

Keywords

Comments

Any term x = a(m) of this sequence can be used with any term y of A275997 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable.
The smallest amicable pair is (220, 284) = (a(2), A275997(2)) = (A063990(1), A063990(2)), where 284 - 220 = 64 is the abundance of 220 and the deficiency of 284.
The amicable pair (66928, 66992) = (a(7), A275997(11)) = (A063990(18), A063990(19)), and 66992 - 66928 = 64 is the abundance of 66928 and the deficiency of 66992.

Examples

			a(1) = 108, since sigma(108) - 2*108 = 280 - 216 = 64.
		

Crossrefs

Programs

  • PARI
    isok(n) = sigma(n) - 2*n == 64; \\ Michel Marcus, Dec 30 2016

Extensions

a(14)-a(15) from Michel Marcus, Dec 30 2016
a(16)-a(21) from Lars Blomberg, Jan 12 2017
Terms a(22) onward from Max Alekseyev, Aug 27 2025

A156560 Primes of the form 2^n-5.

Original entry on oeis.org

3, 11, 59, 251, 1019, 4091, 262139, 1048571, 67108859, 4294967291, 68719476731, 72057594037927931, 73786976294838206459, 332306998946228968225951765070086139, 1361129467683753853853498429727072845819, 1427247692705959881058285969449495136382746619
Offset: 1

Views

Author

Vincenzo Librandi, Feb 10 2009

Keywords

Comments

If p = 2^n-5 is prime, then p*2^(n-1) is abundant with abundance 4 (see A088832). - Davide Rotondo, Oct 25 2020

Crossrefs

Corresponding n's are in A059608.
Cf. A088832.

Programs

  • Magma
    [ a: n in [2..500] | IsPrime(a) where a is 2^n-5 ];
    
  • Mathematica
    Select[Table[2^n-5,{n,2,400}],PrimeQ] (* Vincenzo Librandi, Jul 26 2012 *)
  • PARI
    for(n=1,300,q=2^n-5;if(isprime(q),print(q))) /* gives more terms in <10secs */ \\ Joerg Arndt, Dec 03 2010

Formula

a(n) = 2^A059608(n) - 5.

Extensions

Edited by Zak Seidov

A181597 (N\{4})-perfect numbers, i.e., numbers m for which sigma(m)-4 = 2m, if 4|m, otherwise sigma(m) = 2m.

Original entry on oeis.org

6, 12, 88, 1888, 32128, 521728, 1848964, 8378368, 34359083008, 549753192448
Offset: 1

Views

Author

Vladimir Shevelev, Nov 01 2010, Nov 03 2010

Keywords

Comments

Or union of {6}, near-perfect numbers m (cf. A181595) for which d(m)=4, and all odd perfect numbers (if they exist). Note that (N\{2})-perfect numbers are numbers for which sigma(m)-2=2m, if m is even, and sigma(m)=2m, if m is odd. They are all even numbers of A045768 and all odd perfect numbers (if they exist).

Examples

			88 is in the sequence since sigma(88) = 180 and 180 - 4 = 2*88.
		

Crossrefs

Extensions

Invalid term removed and a(8)-a(10) from Donovan Johnson, Sep 14 2013

A275997 Numbers k whose deficiency is 64: 2k - sigma(k) = 64.

Original entry on oeis.org

134, 284, 410, 632, 1292, 1628, 4064, 9752, 12224, 22712, 66992, 72944, 403988, 556544, 2161664, 2330528, 8517632, 13228352, 14563832, 15422912, 20732792, 89472632, 134733824, 150511232, 283551872, 537903104, 731670272, 915473696, 1846850576, 2149548032, 2159587616
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 16 2016

Keywords

Comments

Any term x = a(m) in this sequence can be used with any term y in A275996 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable.
The smallest amicable pair is (220, 284) = (A275996(2), a(2)) = (A063990(1), A063990(2)), where 284 - 220 = 64 is the abundance of 220 and the deficiency of 284.
The amicable pair (66928, 66992) = (A275996(7), a(11)) = (A063990(18), A063990(19)), where 66992 - 66928 = 64 is the deficiency of 66992 and the abundance of 66928.
Contains numbers 2^(k-1)*(2^k + 63) whenever 2^k + 63 is prime. - Max Alekseyev, Aug 27 2025

Examples

			a(1) = 134, since 2*134 - sigma(134) = 268 - 204 = 64.
		

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).

Programs

  • Mathematica
    Select[Range[10^7], 2 # - DivisorSigma[1, #] == 64 &] (* Michael De Vlieger, Jan 10 2017 *)
  • PARI
    isok(n) = 2*n - sigma(n) == 64; \\ Michel Marcus, Dec 30 2016

Extensions

a(23)-a(31) from Jinyuan Wang, Mar 02 2020
Showing 1-10 of 16 results. Next