cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A086645 Triangle read by rows: T(n, k) = binomial(2n, 2k).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 28, 70, 28, 1, 1, 45, 210, 210, 45, 1, 1, 66, 495, 924, 495, 66, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 153, 3060, 18564, 43758, 43758, 18564, 3060, 153, 1, 1, 190, 4845, 38760
Offset: 0

Views

Author

Philippe Deléham, Jul 26 2003

Keywords

Comments

Terms have the same parity as those of Pascal's triangle.
Coefficients of polynomials (1/2)*((1 + x^(1/2))^(2n) + (1 - x^(1/2))^(2n)).
Number of compositions of 2n having k parts greater than 1; example: T(3, 2) = 15 because we have 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 3+3. - Philippe Deléham, May 18 2005
Number of binary words of length 2n - 1 having k runs of consecutive 1's; example: T(3,2) = 15 because we have 00101, 01001, 01010, 01011, 01101, 10001, 10010, 10011, 10100, 10110, 10111, 11001, 11010, 11011, 11101. - Philippe Deléham, May 18 2005
Let M_n be the n X n matrix M_n(i, j) = T(i, j-1); then for n > 0, det(M_n) = A000364(n), Euler numbers; example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385 = A000364(4). - Philippe Deléham, Sep 04 2005
Equals ConvOffsStoT transform of the hexagonal numbers, A000384: (1, 6, 15, 28, 45, ...); e.g., ConvOffs transform of (1, 6, 15, 28) = (1, 28, 70, 28, 1). - Gary W. Adamson, Apr 22 2008
From Peter Bala, Oct 23 2008: (Start)
Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A127674 for (a signed version of) the corresponding array of f-vectors for these type C_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
The Hilbert transform of this triangle is A142992 (see A145905 for the definition of this term).
(End)
Diagonal sums: A108479. - Philippe Deléham, Sep 08 2009
Coefficients of Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
Generalized Narayana triangle for 4^n (or cosh(2x)). - Paul Barry, Sep 28 2010
Coefficients of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A086646(n,k). - R. J. Mathar, Mar 12 2013
Let E(y) = Sum_{n>=0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. Cf. A103327. - Peter Bala, Aug 06 2013
Row 6, (1,66,495,924,495,66,1), plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534, and A034839. - Tom Copeland, Dec 12 2016

Examples

			From _Peter Bala_, Oct 23 2008: (Start)
The triangle begins
n\k|..0.....1.....2.....3.....4.....5.....6
===========================================
0..|..1
1..|..1.....1
2..|..1.....6.....1
3..|..1....15....15.....1
4..|..1....28....70....28.....1
5..|..1....45...210...210....45.....1
6..|..1....66...495...924...495....66.....1
...
(End)
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + y/2! + y^2/4! + y^3/6! + y^4/8! + ....
2nd col: 1/2!*y*cosh(sqrt(y)) = y/2! + 6*y^2/4! + 15*y^3/6! + 28*y^4/8! + ....
3rd col: 1/4!*y^2*cosh(sqrt(y)) = y^2/4! + 15*y^3/6! + 70*y^4/8! + 210*y^5/10! + .... (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Cf. A008459, A108558, A127674, A142992. - Peter Bala, Oct 23 2008
Cf. A103327 (binomial(2n+1, 2k+1)), A103328 (binomial(2n, 2k+1)), A091042 (binomial(2n+1, 2k)). -Wolfdieter Lang, Jan 06 2013
Cf. A086646 (unsigned matrix inverse), A103327.
Cf. A034839.

Programs

  • Magma
    /* As triangle: */ [[Binomial(2*n, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 14 2016
  • Maple
    A086645:=(n,k)->binomial(2*n,2*k): seq(seq(A086645(n,k),k=0..n),n=0..12);
  • Mathematica
    Table[Binomial[2 n, 2 k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
  • Maxima
    create_list(binomial(2*n,2*k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    {T(n, k) = binomial(2*n, 2*k)};
    
  • PARI
    {T(n, k) = sum( i=0, min(k, n-k), 4^i * binomial(n, 2*i) * binomial(n - 2*i, k-i))}; /* Michael Somos, May 26 2005 */
    

Formula

T(n, k) = (2*n)!/((2*(n-k))!*(2*k)!) row sums = A081294. COLUMNS: A000012, A000384
Sum_{k>=0} T(n, k)*A000364(k) = A000795(n) = (2^n)*A005647(n).
Sum_{k>=0} T(n, k)*2^k = A001541(n). Sum_{k>=0} T(n, k)*3^k = 2^n*A001075(n). Sum_{k>=0} T(n, k)*4^k = A083884(n). - Philippe Deléham, Feb 29 2004
O.g.f.: (1 - z*(1+x))/(x^2*z^2 - 2*x*z*(1+z) + (1-z)^2) = 1 + (1 + x)*z +(1 + 6*x + x^2)*z^2 + ... . - Peter Bala, Oct 23 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A081294(n), A001541(n), A090965(n), A083884(n), A099140(n), A099141(n), A099142(n), A165224(n), A026244(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 08 2009
Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
From Paul Barry, Sep 28 2010: (Start)
G.f.: 1/(1-x-x*y-4*x^2*y/(1-x-x*y)) = (1-x*(1+y))/(1-2*x*(1+y)+x^2*(1-y)^2);
E.g.f.: exp((1+y)*x)*cosh(2*sqrt(y)*x);
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j))*4^(k-j). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2), with T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013
From Peter Bala, Sep 22 2021: (Start)
n-th row polynomial R(n,x) = (1-x)^n*T(n,(1+x)/(1-x)), where T(n,x) is the n-th Chebyshev polynomial of the first kind. Cf. A008459.
R(n,x) = Sum_{k = 0..n} binomial(n,2*k)*(4*x)^k*(1 + x)^(n-2*k).
R(n,x) = n*Sum_{k = 0..n} (n+k-1)!/((n-k)!*(2*k)!)*(4*x)^k*(1-x)^(n-k) for n >= 1. (End)

A001091 a(n) = 8*a(n-1) - a(n-2); a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 31, 244, 1921, 15124, 119071, 937444, 7380481, 58106404, 457470751, 3601659604, 28355806081, 223244789044, 1757602506271, 13837575261124, 108942999582721, 857706421400644, 6752708371622431, 53163960551578804
Offset: 0

Views

Author

Keywords

Comments

a(15+30k)-1 and a(15+30k)+1 are consecutive odd powerful numbers. The first pair is 13837575261124 +- 1. See A076445. - T. D. Noe, May 04 2006
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 15*y^2 = 1. The corresponding y values are in A001090. - Vincenzo Librandi, Nov 12 2010 [edited by Jon E. Schoenfield, May 04 2014]
The square root of 15*(n^2-1) at those numbers = 5 * A136325. - Richard R. Forberg, Nov 22 2013
For the above Diophantine equation x^2-15*y^2=1, x + y = A105426. - Richard R. Forberg, Nov 22 2013
a(n) solves for x in the Diophantine equation floor(3*x^2/5)= y^2. The corresponding y solutions are provided by A136325(n). x + y = A070997(n). - Richard R. Forberg, Nov 22 2013
Except for the first term, values of x (or y) in the solutions to x^2 - 8xy + y^2 + 15 = 0. - Colin Barker, Feb 05 2014

References

  • Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001090, A090965, A098269, A322836 (column 4).

Programs

  • GAP
    a:=[1,4];; for n in [3..20] do a[n]:=8*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1-4*x)/(1-8*x+x^2) )); // G. C. Greubel, Aug 26 2019
    
  • Mathematica
    LinearRecurrence[{8,-1},{1,4},20] (* Harvey P. Dale, May 01 2014 *)
  • PARI
    a(n)=subst(poltchebi(n),x,4)
    
  • PARI
    a(n)=n=abs(n); polcoeff((1-4*x)/(1-8*x+x^2)+x*O(x^n),n) /* Michael Somos, Jun 07 2005 */
    
  • Sage
    def A001091_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-4*x)/(1-8*x+x^2) ).list()
    A001091_list(20) # G. C. Greubel, Aug 26 2019
    

Formula

G.f.: A(x) = (1-4*x)/(1-8*x+x^2). - Simon Plouffe in his 1992 dissertation
For all elements x of the sequence, 15*(x^2 -1) is a square. Limit_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 11 2002
a(n) = sqrt(15*((A001090(n))^2)+1).
a(n) = ((4+sqrt(15))^n + (4-sqrt(15))^n)/2.
a(n) = 4*S(n-1, 8) - S(n-2, 8) = (S(n, 8) - S(n-2, 8))/2, n>=1; S(n, x) := U(n, x/2) with Chebyshev's polynomials of the 2nd kind, A049310, with S(-1, x) := 0 and S(-2, x) := -1.
a(n) = T(n, 4) with Chebyshev's polynomials of the first kind; see A053120.
a(n)=a(-n). - Ralf Stephan, Jun 06 2005
a(n)*a(n+3) - a(n+1)*a(n+2) = 120. - Ralf Stephan, Jun 06 2005
From Peter Bala, Feb 19 2022: (Start)
a(n) = Sum_{k = 0..floor(n/2)} 4^(n-2*k)*15^k*binomial(n,2*k).
a(n) = [x^n] (4*x + sqrt(1 + 15*x^2))^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 16*x + 4*x^2) is the g.f. of A098269.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k. (End)
From Peter Bala, Aug 17 2022: (Start)
Sum_{n >= 1} 1/(a(n) - (5/2)/a(n)) = 1/3.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + (3/2)/a(n)) = 1/5.
Sum_{n >= 1} 1/(a(n)^2 - 5/2) = 1/3 - 1/sqrt(15). (End)
a(n) = A001090(n+1)-4*A001090(n). - R. J. Mathar, Dec 12 2023

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Aug 25 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A124182 A skewed version of triangular array A081277.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 3, 4, 0, 0, 1, 8, 8, 0, 0, 0, 5, 20, 16, 0, 0, 0, 1, 18, 48, 32, 0, 0, 0, 0, 7, 56, 112, 64, 0, 0, 0, 0, 1, 32, 160, 256, 128, 0, 0, 0, 0, 0, 9, 120, 432, 576, 256, 0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0,...] where DELTA is the operator defined in A084938. Falling diagonal sums in A052980.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 3, 4;
  0, 0, 1, 8,  8;
  0, 0, 0, 5, 20, 16;
  0, 0, 0, 1, 18, 48,  32;
  0, 0, 0, 0,  7, 56, 112,  64;
  0, 0, 0, 0,  1, 32, 160, 256,  128;
  0, 0, 0, 0,  0,  9, 120, 432,  576,  256;
  0, 0, 0, 0,  0,  1,  50, 400, 1120, 1280, 512;
		

Crossrefs

Cf. A025192 (column sums). Diagonals include A011782, A001792, A001793, A001794, A006974, A006975, A006976.

Formula

T(0,0)=T(1,1)=1, T(n,k)=0 if n < k or if k < 0, T(n,k) = T(n-2,k-1) + 2*T(n-1,k-1).
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A090965(n), (-1)^n*A084120(n), (-1)^n*A006012(n), A033999(n), A000007(n), A001333(n), A084059(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sum_{k=0..floor(n/2)} T(n-k,k) = Fibonacci(n-1) = A000045(n-1).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 respectively. - Philippe Deléham, Dec 26 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x= 0,1,2,3,4,5,6 respectively. - Philippe Deléham, Nov 14 2008
G.f.: (1-y*x)/(1-2y*x-y*x^2). - Philippe Deléham, Dec 04 2011
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n > 0. - Philippe Deléham, Dec 04 2011

A099140 a(n) = 4^n * T(n,3/2) where T is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 6, 56, 576, 6016, 62976, 659456, 6905856, 72318976, 757334016, 7930904576, 83053510656, 869747654656, 9108115685376, 95381425750016, 998847258034176, 10460064284409856, 109539215284371456, 1147109554861899776
Offset: 0

Views

Author

Paul Barry, Sep 30 2004

Keywords

Comments

In general, r^n * T(n,(r+2)/r) has g.f. (1-(r+2)*x)/(1-2*(r+2)*x + r^2*x^2), e.g.f. exp((r+2)*x)*cosh(2*sqrt(r+1)*x), a(n) = Sum_{k=0..n} (r+1)^k*binomial(2n,2k) and a(n) = (1+sqrt(r+1))^(2n)/2 + (1-sqrt(r+1))^(2n)/2.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{12,-16},{1,6},30] (* Harvey P. Dale, Oct 23 2012 *)
  • PARI
    a(n) = 4^n*polchebyshev(n, 1, 3/2); \\ Michel Marcus, Sep 08 2019

Formula

G.f.: (1-6*x)/(1-12*x+16*x^2);
E.g.f.: exp(6*x)*cosh(2*sqrt(5)*x);
a(n) = 4^n * T(n, 6/4) where T is the Chebyshev polynomial of the first kind;
a(n) = Sum_{k=0..n} 5^k*binomial(2n, 2k);
a(n) = (1+sqrt(5))^(2n)/2 + (1-sqrt(5))^(2n)/2.
a(n) = a(0)=1, a(1)=6, 12*a(n-1) - 16*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009

A099141 a(n) = 5^n * T(n,7/5) where T is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 7, 73, 847, 10033, 119287, 1419193, 16886527, 200931553, 2390878567, 28449011113, 338514191407, 4027973401873, 47928772841047, 570303484727833, 6786029465163487, 80746825394092993, 960804818888214727
Offset: 0

Views

Author

Paul Barry, Sep 30 2004

Keywords

Comments

In general, r^n * T(n,(r+2)/r) has g.f. (1-(r+2)*x)/(1-2*(r+2)*x + r^2*x^2), e.g.f. exp((r+2)*x)*cosh(2*sqrt(r+1)*x), a(n) = Sum_{k=0..n} (r+1)^k*binomial(2*n,2*k) and a(n) = (1+sqrt(r+1))^(2*n)/2 + (1-sqrt(r+1))^(2*n)/2.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{14,-25},{1,7},30] (* Harvey P. Dale, Dec 26 2014 *)

Formula

G.f.: (1-7*x)/(1-14*x+25*x^2);
e.g.f.: exp(7*x)*cosh(2*sqrt(6)*x);
a(n) = 5^n * T(n, 7/5) where T is the Chebyshev polynomial of the first kind;
a(n) = Sum_{k=0..n} 6^k * binomial(2n, 2k);
a(n) = (1+sqrt(6))^(2n)/2 + (1-sqrt(6))^(2n)/2.
a(0)=1, a(1)=7, a(n) = 14*a(n-1) - 25*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009

A099156 a(n) = 2^(n-1)*ChebyshevU(n-1, 2).

Original entry on oeis.org

0, 1, 8, 60, 448, 3344, 24960, 186304, 1390592, 10379520, 77473792, 578272256, 4316282880, 32217174016, 240472260608, 1794909388800, 13397386067968, 99999450988544, 746406063636480, 5571250705137664, 41584381386555392
Offset: 0

Views

Author

Paul Barry, Oct 01 2004

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 8*Self(n-1) -4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 20 2023
    
  • Mathematica
    LinearRecurrence[{8,-4}, {0,1}, 40] (* G. C. Greubel, Jul 20 2023 *)
  • Python
    from sympy import chebyshevu
    def A099156(n): return chebyshevu(n-1,2)<Chai Wah Wu, Nov 08 2023
  • SageMath
    [lucas_number1(n, 8, 4) for n in range(21)]  # Zerinvary Lajos, Apr 23 2009
    
  • SageMath
    A099156=BinaryRecurrenceSequence(8,-4,0,1)
    [A099156(n) for n in range(41)] # G. C. Greubel, Jul 20 2023
    

Formula

G.f.: x/(1-8*x+4*x^2).
E.g.f.: exp(4*x) * sinh(2*sqrt(3)*x) / sqrt(3).
a(n) = 8*a(n-1) - 4*a(n-2).
a(n) = sqrt(3) / 12 *( (1+sqrt(3))^(2*n) - (sqrt(3)-1)^(2*n) ).
a(n) = Sum_{k=0..n} binomial(2*n, 2*k+1) * 3^k/2.
a(n) = 2^(n-1)*U(n-1, 4/2) where U is the Chebyshev polynomial of the second kind.
a(n) = 2^(n-1)*A001353(n). - R. J. Mathar, Sep 11 2019
a(n) = 2^(2*n-1)*Sum_{k >= n} binomial(2*k,2*n-1)*(1/3)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n+1) = Sum_{i>=0} Sum{j>=0} 2^(2*n-i-j)*binomial(n-i,j)*binomial(n-j,i). - Greg Dresden and Bowen Shi, Aug 28 2023

A099142 a(n) = 6^n * T(n, 4/3) where T is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 8, 92, 1184, 15632, 207488, 2757056, 36643328, 487039232, 6473467904, 86042074112, 1143628341248, 15200538791936, 202038000386048, 2685388609667072, 35692849740775424, 474411605904392192
Offset: 0

Views

Author

Paul Barry, Sep 30 2004

Keywords

Comments

In general, r^n * T(n,(r+2)/r) has g.f. (1-(r+2)*x)/(1-2*(r+2)*x + r^2*x^2), e.g.f. exp((r+2)*x)*cosh(2*sqrt(r+1)*x), a(n) = Sum_{k=0..n} (r+1)^k*binomial(2n,2k) and a(n) = (1+sqrt(r+1))^(2*n)/2 + (1-sqrt(r+1))^(2*n)/2.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{16,-36},{1,8},20] (* Harvey P. Dale, Mar 09 2018 *)
  • PARI
    a(n) = 6^n*polchebyshev(n, 1, 4/3); \\ Michel Marcus, Sep 08 2019

Formula

G.f.: (1-8*x)/(1-16*x+36*x^2);
E.g.f.: exp(8*x)*cosh(2*sqrt(7)*x).
a(n) = 6^n * T(n, 8/6) where T is the Chebyshev polynomial of the first kind.
a(n) = Sum_{k=0..n} 7^k * binomial(2n, 2k).
a(n) = (1+sqrt(7))^(2*n)/2 + (1-sqrt(7))^(2*n)/2.
a(0)=1, a(1)=8, a(n) = 16*a(n-1) - 36*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009

A333988 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of (1-(k+1)*x) / (1-2*(k+1)*x+((k-1)*x)^2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 4, 17, 32, 1, 1, 5, 28, 99, 128, 1, 1, 6, 41, 208, 577, 512, 1, 1, 7, 56, 365, 1552, 3363, 2048, 1, 1, 8, 73, 576, 3281, 11584, 19601, 8192, 1, 1, 9, 92, 847, 6016, 29525, 86464, 114243, 32768, 1, 1, 10, 113, 1184, 10033, 62976, 265721, 645376, 665857, 131072, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 04 2020

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,     1, ...
  1,   2,    3,     4,     5,     6, ...
  1,   8,   17,    28,    41,    56, ...
  1,  32,   99,   208,   365,   576, ...
  1, 128,  577,  1552,  3281,  6016, ...
  1, 512, 3363, 11584, 29525, 62976, ...
		

Crossrefs

Main diagonal gives A333990.

Programs

  • Mathematica
    T[n_, 0] := 1; T[n_, k_] := Sum[k^j * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 04 2020 *)
  • PARI
    {T(n, k) = sum(j=0, n, k^j*binomial(2*n, 2*j))}

Formula

T(n,k) = Sum_{j=0..n} k^j * binomial(2*n,2*j).
T(0,k) = 1, T(1,k) = k+1 and T(n,k) = 2 * (k+1) * T(n-1,k) - (k-1)^2 * T(n-2,k) for n>1.

A165241 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 9, 6, 1, 8, 24, 25, 10, 1, 16, 60, 85, 55, 15, 1, 32, 144, 258, 231, 105, 21, 1, 64, 336, 728, 833, 532, 182, 28, 1, 128, 768, 1952, 2720, 2241, 1092, 294, 36, 1, 256, 1728, 5040, 8280, 8361, 5301, 2058, 450, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 09 2009

Keywords

Comments

Rows sums: A006012; Diagonal sums: A052960.
The sums of each column of A117317 with its subsequent column, treated as a lower triangular matrix with an initial null column attached, or, equivalently, the products of the row polynomials p(n,y) of A117317 with (1+y) with the initial first row below added to the final result. The reversal of A117317 is A056242 with several combinatorial interpretations. - Tom Copeland, Jan 08 2017

Examples

			Triangle begins:
  1;
  1,  1;
  2,  3,  1;
  4,  9,  6,  1;
  8, 24, 25, 10,  1; ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. Sum_{k=0..n} T(n,k)*x^(n-k) = A123335(n), A000007(n), A000012(n), A006012(n), A084120(n), A090965(n), A165225(n), A165229(n), A165230(n), A165231(n), A165232(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively.
G.f.: (1-(1+y)*x)/(1-2(1+y)*x+(y+y^2)*x^2). - Philippe Deléham, Dec 19 2011
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2) with T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if nPhilippe Deléham, Dec 19 2011

Extensions

O.g.f. corrected by Tom Copeland, Jan 15 2017

A165224 a(0)=1, a(1)=9, a(n) = 18*a(n-1) - 49*a(n-2) for n > 1.

Original entry on oeis.org

1, 9, 113, 1593, 23137, 338409, 4957649, 72655641, 1064876737, 15607654857, 228758827313, 3352883803641, 49142725927201, 720277760311209, 10557006115168913, 154732499817791193, 2267891697076964737
Offset: 0

Views

Author

Philippe Deléham, Sep 08 2009

Keywords

Comments

a(n)/a(n-1) tends to 9 + 4*sqrt(2) = 14.65685424... - Klaus Brockhaus, Sep 25 2009

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{18,-49},{1,9},20] (* Harvey P. Dale, Sep 30 2016 *)

Formula

G.f.: (1-9x)/(1-18x+49x^2);
e.g.f.: exp(9x)*cosh(4*sqrt(2)x);
a(n) = Sum_{k=0..n} 8^k*binomial(2n,2k) = Sum_{k=0..n} 8^k*A086645(n,k);
a(n) = 7^n*T(n,9/7) where T is the Chebyshev polynomial of the first kind;
a(n) = (1+sqrt(8))^(2n)/2 + (1-sqrt(8))^(2n)/2.
a(n) = ((9-4*sqrt(2))^n + (9+4*sqrt(2))^n)/2. - Klaus Brockhaus, Sep 25 2009
Showing 1-10 of 11 results. Next