cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A059304 a(n) = 2^n * (2*n)! / (n!)^2.

Original entry on oeis.org

1, 4, 24, 160, 1120, 8064, 59136, 439296, 3294720, 24893440, 189190144, 1444724736, 11076222976, 85201715200, 657270374400, 5082890895360, 39392404439040, 305870434467840, 2378992268083200, 18531097667174400
Offset: 0

Views

Author

Henry Bottomley, Jan 25 2001

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (0,1), and two kinds of steps (1,0). - Joerg Arndt, Jul 01 2011
The convolution square root of this sequence is A004981. - T. D. Noe, Jun 11 2002
Also main diagonal of array: T(i,1)=2^(i-1), T(1,j)=1, T(i,j) = T(i,j-1) + 2*T(i-1,j). - Benoit Cloitre, Feb 26 2003
The Hankel transform (see A001906 for definition) of this sequence with interpolated zeros(1, 0, 4, 0, 24, 0, 160, 0, 1120, ...) = is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
The Hankel transform of this sequence gives A103488. - Philippe Deléham, Dec 02 2007
Equals the central column of the triangle A038207. - Zerinvary Lajos, Dec 08 2007
Equals number of permutations whose reverse shares the same recording tableau in the Robinson-Schensted correspondence with n=(k-1)/2 for k odd. - Dang-Son Nguyen, Jul 02 2024
Number of ternary strings of length 2*n that have the same number of 0's as the combined number of 1's and 2's. For example, a(2)=24 since the strings of length 4 are the 6 permutations of 0011, the 12 permutations of 0012, and the 6 permutations of 0022. - Enrique Navarrete, Jul 30 2025

Crossrefs

Diagonal of A013609.
Column k=0 of A067001.

Programs

  • Magma
    [2^n*Binomial(2*n,n): n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
    
  • Maple
    seq(binomial(2*n,n)*2^n,n=0..19); # Zerinvary Lajos, Dec 08 2007
  • Mathematica
    Table[2^n Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, Dec 16 2014 *)
  • PARI
    {a(n)=if(n<0, 0, 2^n*(2*n)!/n!^2)} /* Michael Somos, Jan 31 2007 */
    
  • PARI
    { for (n = 0, 200, write("b059304.txt", n, " ", 2^n * (2*n)! / n!^2); ) } \\ Harry J. Smith, Jun 25 2009
    
  • PARI
    /* as lattice paths: same as in A092566 but use */
    steps=[[1, 0], [1, 0], [0, 1]]; /* note the double [1, 0] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • SageMath
    def A059304(n): return pow(2,n)*binomial(2*n,n)
    print([A059304(n) for n in range(41)]) # G. C. Greubel, Jan 18 2025

Formula

a(n) = 2^n * C(2*n,n).
D-finite with recurrence a(n) = 4*(2-1/n)*a(n-1).
a(n) = A000079(n)*A000984(n)
G.f.: 1/sqrt(1-8*x) - T. D. Noe, Jun 11 2002
E.g.f.: exp(4*x)*BesselI(0, 4*x). - Vladeta Jovovic, Aug 20 2003
a(n) = A038207(n,n). - Joerg Arndt, Jul 01 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 4*x*(2*k+1)/(4*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - 4*x/(4*x + (k+1)^2/(2*k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: Q(0)/(1+2*sqrt(x)), where Q(k) = 1 + 2*sqrt(x)/(1 - 2*sqrt(x)*(2*k+1)/(2*sqrt(x)*(2*k+1) + (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 09 2013
O.g.f.: hypergeom([1/2], [], 8*x). - Peter Luschny, Oct 08 2015
a(n) = Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n,k)*binomial(3*n-2*k,n)* binomial(n+k,n). - Peter Bala, Aug 04 2016
a(n) ~ 8^n/sqrt(Pi*n). - Ilya Gutkovskiy, Aug 04 2016
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = 8/7 + 8*sqrt(7)*arcsin(1/sqrt(8))/49.
Sum_{n>=0} (-1)^n/a(n) = (8/27)*(3 - arcsinh(1/sqrt(8))). (End)
a(n) = Sum_{k = n..2*n} binomial(2*n,k)*binomial(k,n). In general, for m >= 1, Sum_{k = n..m*n} binomial(m*n,k)*binomial(k,n) = 2^((m-1)*n)*binomial(m*n,n). - Peter Bala, Mar 25 2023
Conjecture: a(n) = Sum_{0 <= j, k <= n} binomial(n, j)*binomial(n, k)* binomial(k+j, n). - Peter Bala, Jul 16 2024

A084771 Coefficients of expansion of 1/sqrt(1 - 10*x + 9*x^2); also, a(n) is the central coefficient of (1 + 5*x + 4*x^2)^n.

Original entry on oeis.org

1, 5, 33, 245, 1921, 15525, 127905, 1067925, 9004545, 76499525, 653808673, 5614995765, 48416454529, 418895174885, 3634723102113, 31616937184725, 275621102802945, 2407331941640325, 21061836725455905, 184550106298084725
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003

Keywords

Comments

Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the U steps come in four colors and the H steps come in five colors. - N-E. Fahssi, Mar 30 2008
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (0,1), and three kinds of steps (1,1). - Joerg Arndt, Jul 01 2011
Sums of squares of coefficients of (1+2*x)^n. - Joerg Arndt, Jul 06 2011
The Hankel transform of this sequence gives A103488. - Philippe Deléham, Dec 02 2007
Partial sums of A085363. - J. M. Bergot, Jun 12 2013
Diagonal of rational functions 1/(1 - x - y - 3*x*y), 1/(1 - x - y*z - 3*x*y*z). - Gheorghe Coserea, Jul 06 2018

Examples

			G.f.: 1/sqrt(1-2*b*x+(b^2-4*c)*x^2) yields central coefficients of (1+b*x+c*x^2)^n.
		

Crossrefs

Cf. A001850, A059231, A059304, A246923 (a(n)^2).

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->Binomial(n,k)^2*4^k)); # Muniru A Asiru, Jul 29 2018
    
  • Magma
    [3^n*Evaluate(LegendrePolynomial(n), 5/3) : n in [0..40]]; // G. C. Greubel, May 30 2023
    
  • Maple
    seq(simplify(hypergeom([-n,1/2], [1], -8)),n=0..19); # Peter Luschny, Apr 26 2016
  • Mathematica
    Table[n! SeriesCoefficient[E^(5 x) BesselI[0, 4 x], {x, 0, n}], {n, 0, 30}] (* Vincenzo Librandi, May 10 2013 *)
    Table[Hypergeometric2F1[-n, -n, 1, 4], {n,0,30}] (* Vladimir Reshetnikov, Nov 29 2013 *)
    CoefficientList[Series[1/Sqrt[1-10x+9x^2],{x,0,30}],x] (* Harvey P. Dale, Mar 08 2016 *)
    Table[3^n*LegendreP[n, 5/3], {n, 0, 40}] (* G. C. Greubel, May 30 2023 *)
  • PARI
    {a(n) = if( n<0, -3 * 9^n * a(-1-n), sum(k=0,n, binomial(n, k)^2 * 4^k))}; /* Michael Somos, Oct 08 2003 */
    
  • PARI
    {a(n) = if( n<0, -3 * 9^n * a(-1-n), polcoeff((1 + 5*x + 4*x^2)^n, n))}; /* Michael Somos, Oct 08 2003 */
    
  • PARI
    /* as lattice paths: same as in A092566 but use */
    steps=[[1,0], [0,1], [1,1], [1,1], [1,1]]; /* note the triple [1,1] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • PARI
    a(n)={local(v=Vec((1+2*x)^n));sum(k=1,#v,v[k]^2);} /* Joerg Arndt, Jul 06 2011 */
    
  • PARI
    a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])^2+imag(v[k])^2);} /* Joerg Arndt, Jul 06 2011 */
    
  • SageMath
    [3^n*gen_legendre_P(n, 0, 5/3) for n in range(41)] # G. C. Greubel, May 30 2023

Formula

G.f.: 1 / sqrt(1 - 10*x + 9*x^2).
From Vladeta Jovovic, Aug 20 2003: (Start)
Binomial transform of A059304.
G.f.: Sum_{k >= 0} binomial(2*k,k)*(2*x)^k/(1-x)^(k+1).
E.g.f.: exp(5*x)*BesselI(0, 4*x). (End)
a(n) = Sum_{k = 0..n} Sum_{j = 0..n-k} C(n,j)*C(n-j,k)*C(2*n-2*j,n-j). - Paul Barry, May 19 2006
a(n) = Sum_{k = 0..n} 4^k*C(n,k)^2. - heruneedollar (heruneedollar(AT)gmail.com), Mar 20 2010
a(n) ~ 3^(2*n+1)/(2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Sep 11 2012
D-finite with recurrence: n*a(n) = 5*(2*n-1)*a(n-1) - 9*(n-1)*a(n-2). - R. J. Mathar, Nov 26 2012
a(n) = hypergeom([-n, -n], [1], 4). - Vladimir Reshetnikov, Nov 29 2013
a(n) = hypergeom([-n, 1/2], [1], -8). - Peter Luschny, Apr 26 2016
From Michael Somos, Jun 01 2017: (Start)
a(n) = -3 * 9^n * a(-1-n) for all n in Z.
0 = a(n)*(+81*a(n+1) -135*a(n+2) +18*a(n+3)) +a(n+1)*(-45*a(n+1) +100*a(n+2) -15*a(n+3)) +a(n+2)*(-5*a(n+2) +a(n+3)) for all n in Z. (End)
From Peter Bala, Nov 13 2022: (Start)
1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 5*x^2 + 29*x^3 + 185*x^4 + 1257*x^5 + ... is the g.f. of A059231.
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all positive integers n and r and all primes p. (End)
a(n) = 3^n * LegendreP(n, 5/3). - G. C. Greubel, May 30 2023
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A332721 Number of compositions of n^2 with parts <= n, such that each element of [n] is used at least once.

Original entry on oeis.org

1, 1, 3, 72, 5752, 1501620, 1171326960, 2571831080160, 15245263511750160, 236246829658682027760, 9325247205993698149853760, 917699267902161951609308035200, 221117091698491444413008381486903040, 128433050637127079872089064922773889126400
Offset: 0

Views

Author

Alois P. Heinz, Feb 21 2020

Keywords

Examples

			a(2) = 3: 112, 121, 211.
a(3) = 72: 111123, 111132, 111213, 111231, 111312, 111321, 112113, 112131, 112311, 113112, 113121, 113211, 121113, 121131, 121311, 123111, 131112, 131121, 131211, 132111, 211113, 211131, 211311, 213111, 231111, 311112, 311121, 311211, 312111, 321111, 11223, 11232, 11322, 12123, 12132, 12213, 12231, 12312, 12321, 13122, 13212, 13221, 21123, 21132, 21213, 21231, 21312, 21321, 22113, 22131, 22311, 23112, 23121, 23211, 31122, 31212, 31221, 32112, 32121, 32211, 1233, 1323, 1332, 2133, 2313, 2331, 3123, 3132, 3213, 3231, 3312, 3321.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1, (p+n)!
           /(n+1)!, add(b(n-i*j, i-1, p+j)/(j+1)!, j=0..n/i))
        end:
    a:= n-> b(n*(n-1)/2, n$2):
    seq(a(n), n=0..15);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (p + n)!/(n + 1)!, Sum[b[n - i*j, i - 1, p + j]/(j + 1)!, {j, 0, n/i}]];
    a[n_] := b[n(n - 1)/2, n, n];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 04 2022, after Alois P. Heinz *)

Formula

a(n) = A373118(n^2,n). - Alois P. Heinz, May 26 2024

A332796 Number of compositions of n^2 into parts >= n.

Original entry on oeis.org

1, 1, 2, 6, 26, 140, 882, 6349, 51284, 457704, 4459940, 47019819, 532485538, 6438774524, 82710138994, 1123798871990, 16090426592488, 241979954659728, 3811335657375786, 62712512310820402, 1075527196672980525, 19186234784992217621, 355349469934379290700
Offset: 0

Views

Author

Alois P. Heinz, Feb 24 2020

Keywords

Examples

			a(0) = 1: (), the empty composition.
a(1) = 1: 1.
a(2) = 2: 22, 4.
a(3) = 6: 333, 36, 63, 45, 54, 9.
a(4) = 26: 4444, 556, 565, 655, 466, 646, 664, 457, 475, 547, 574, 745, 754, 448, 484, 844, 88, 79, 97, 6(10), (10)6, 5(11), (11)5, 4(12), (12)4, (16).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k), j=k..n))
        end:
    a:= n-> b(n^2, n):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k], {j, k, n}]];
    a[n_] := b[n^2, n];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Mar 04 2022, after Alois P. Heinz *)

A332716 Number of compositions of n^2 where each part is less than or equal to n.

Original entry on oeis.org

1, 1, 5, 149, 20569, 11749641, 26649774581, 236837126431501, 8237168505776637425, 1125036467745713090813969, 606147434557459526483161067501, 1293596348252277644272081532560154645, 10970544241076481629439275072320816659677161
Offset: 0

Views

Author

Alois P. Heinz, Feb 20 2020

Keywords

Comments

All terms are odd.

Examples

			a(2) = 5: 22, 211, 121, 112, 1111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-d, k), d=1..min(n, k)))
        end:
    a:= n-> b(n^2, n):
    seq(a(n), n=0..15);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - d, k], {d, 1, Min[n, k]}]];
    a[n_] := b[n^2, n];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 31 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{i=0..n-1} A048004(n^2-1,i) for i > 0.

A332747 Number of compositions of n^2, such that each element of [n] is used at least once as a part.

Original entry on oeis.org

1, 1, 3, 72, 6232, 1621620, 1241237520, 2675188471920, 15634073104902000, 239929277724680059440, 9411787539302194544158080, 922671287397731617736789070720, 221805878984619105095368813189002240, 128660270226206951104782827202740054476800
Offset: 0

Views

Author

Alois P. Heinz, Feb 21 2020

Keywords

Comments

Some parts can be larger than n. Adding the condition that parts cannot be larger than n, we get A332721. Removing from A332721 the condition that each element of [n] has to be used, we get A332716.

Examples

			a(4) = 6232: all permutations of 4321111111, 432211111, 43222111, 4322221, 43321111, 4332211, 433321, 4432111, 443221, 543211, 64321.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, m) option remember; `if`(n=0, p!,
          `if`(i<1, 0, (t-> add(b(n-i*j, i-1, p+j, t)/(j+
          `if`(t=0, 1, 0))!, j=0..n/i))(`if`(i>m, m, 0))))
        end:
    a:= n-> b(n*(n-1)/2$2, n$2):
    seq(a(n), n=0..15);
  • Mathematica
    b[n_, i_, p_, m_] := b[n, i, p, m] = If[n == 0, p!,
         If[i < 1, 0, Function[t, [b[n - i*j, i - 1, p + j, t]/(j +
         If[t == 0, 1, 0])!, {j, 0, n/i}]][If[i > m, m, 0]]]];
    a[n_] := b[n(n-1)/2, n(n-1)/2, n, n];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 08 2021, after Alois P. Heinz *)

A367530 The number of ways of tiling the n X n torus up to matrix transposition by a tile that is asymmetric with respect to matrix transposition.

Original entry on oeis.org

1, 4, 32, 2081, 671104, 954448620, 5744387279872, 144115188176529540, 14925010118699132241920, 6338253001141163895983922592, 10985355337065420437221545952731136, 77433143050453552574825990883161180320096, 2213872302702432822841084717014014514981767643136
Offset: 1

Views

Author

Peter Kagey, Dec 13 2023

Keywords

Comments

The n X n torus is an n X n grid where two grids are considered the same if one can reach the other by cyclic shifting of rows and columns.

Crossrefs

Programs

  • Mathematica
    A367530[n_] := 1/(2n^2) (DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/(2 d))]]])

A333048 Number of compositions of n^2 into powers of n.

Original entry on oeis.org

1, 1, 6, 20, 96, 572, 3971, 31201, 272334, 2605268, 27042522, 302171806, 3611295430, 45911641817, 618074912240, 8776287336812, 130994094465946, 2049114914257540, 33504826964461451, 571285301051283841, 10136481840545237652, 186803012671904648805
Offset: 0

Views

Author

Alois P. Heinz, Mar 06 2020

Keywords

Examples

			a(0) = 1: the empty composition.
a(1) = 1: 1.
a(2) = 6: 1111, 112, 121, 211, 22, 4.
a(3) = 20: 111111111, 1111113, 1111131, 1111311, 1113111, 1131111, 1311111, 3111111, 11133, 11313, 11331, 13113, 13131, 13311, 31113, 31131, 31311, 33111, 333, 9.
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n<2, 1, 1+add(binomial(n*(n-j)+j, j), j=0..n)):
    seq(a(n), n=0..21);

Formula

a(n) = 1 + Sum_{j=0..n} binomial(n*(n-j)+j,j) if n>1, a(0) = a(1) = 1.

A121702 a(n)=2^(n^3-1).

Original entry on oeis.org

1, 128, 67108864, 9223372036854775808, 21267647932558653966460912964485513216, 52656145834278593348959013841835216159447547700274555627155488768
Offset: 1

Views

Author

Zerinvary Lajos, Sep 10 2006

Keywords

Comments

Number of grains of wheat on last cube of n X n X n cube.

Crossrefs

Cf. A103488.

Programs

  • Maple
    [seq(2^(n^3-1),n=1..8)];
  • Mathematica
    2^(Range[10]^3-1) (* Harvey P. Dale, Jul 24 2022 *)

Extensions

Offset changed to 1 by Georg Fischer, Apr 10 2024
Showing 1-9 of 9 results.