cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A285058 Numbers k such that k = A104714(A285057(k)).

Original entry on oeis.org

1, 2, 5, 7, 10, 12, 13, 17, 24, 25, 26, 29, 34, 35, 36, 37, 38, 43, 47, 48, 49, 50, 53, 55, 58, 59, 60, 65, 67, 72, 73, 74, 85, 89, 91, 96, 97, 103, 106, 108, 109, 110, 113, 118, 120, 125, 127, 130, 137, 139, 144, 145, 146, 149, 156, 157, 158, 163, 168, 169, 170, 173, 175
Offset: 1

Views

Author

Michel Marcus, Apr 09 2017

Keywords

Comments

The set of distinct values of A104714.
Leonetti & Sanna prove that this sequence is the image of A104714 for n >= 1.
Leonetti & Sanna prove that this sequence has density 0 and a(n) << n log n. - Charles R Greathouse IV, May 08 2017

Crossrefs

Programs

  • Mathematica
    z[n_]:=Block[{k=1}, While[Mod[Fibonacci[k], n]!=0, k ++]; k]; l[n_]:=LCM[n, z[n]]; g[n_]:= GCD[n, Fibonacci[n]]; Select[Range[200], #==g[l[#]] &] (* Indranil Ghosh, Apr 09 2017 *)
  • PARI
    z(n)=my(k = 1); while (fibonacci(k) % n, k++); k; \\ A001177
    l(n) = lcm(n, z(n)); \\ A285057
    g(n) = gcd(n, fibonacci(n)); \\ A104714
    isok(n) = n == g(l(n));
    
  • PARI
    zp(p)=my(k=p+[0,-1,1,1,-1][p%5+1],f=factor(k)); for(i=1,#f[,1], for(j=1,f[i,2], if((Mod([1,1;1,0],p)^(k/f[i,1]))[1,2], break); k/=f[i,1])); k
    z(n)=if(n==1,return(1)); my(f=factor(n),v); v=vector(#f~,i, if(f[i,1]>1e14, zp(f[i,1]^f[i,2]), zp(f[i,1])*f[i,1]^(f[i,2]-1))); if(f[1,1]==2&&f[1,2]>1, v[1]=3<Charles R Greathouse IV, May 08 2017
    
  • Python
    from sympy import fibonacci, gcd, lcm
    def z(n):
        k=1
        while fibonacci(k)%n: k+=1
        return k
    def l(n): return lcm(n, z(n))
    def g(n): return gcd(n, fibonacci(n))
    print([n for n in range(1, 201) if n==g(l(n))]) # Indranil Ghosh, Apr 09 2017

A045925 a(n) = n*Fibonacci(n).

Original entry on oeis.org

0, 1, 2, 6, 12, 25, 48, 91, 168, 306, 550, 979, 1728, 3029, 5278, 9150, 15792, 27149, 46512, 79439, 135300, 229866, 389642, 659111, 1112832, 1875625, 3156218, 5303286, 8898708, 14912641, 24961200, 41734339, 69705888, 116311074, 193898158, 322961275, 537492672
Offset: 0

Views

Author

Keywords

Comments

Number of levels in all compositions of n+1 with only 1's and 2's.
Apart from first term: row sums of the triangle in A131410. - Reinhard Zumkeller, Oct 07 2012
Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {1>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the third one. - Sergey Kitaev, Dec 08 2020

References

  • Jean Paul Van Bendegem, The Heterogeneity of Mathematical Research, a chapter in Perspectives on Interrogative Models of Inquiry, Volume 8 of the series Logic, Argumentation & Reasoning pp 73-94, Springer 2015. See Section 2.1.

Crossrefs

Partial sums: A014286. Cf. A000045.

Programs

  • Haskell
    a045925 n = a045925_list !! (n-1)
    a045925_list = zipWith (*) [0..] a000045_list
    -- Reinhard Zumkeller, Oct 01 2012
  • Magma
    [n*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
    
  • Maple
    a:= n-> n*(<<0|1>, <1|1>>^n)[1,2]:
    seq(a(n), n=0..37);  # Alois P. Heinz, May 07 2021
  • Mathematica
    Table[Fibonacci[n]*n, {n, 0, 33}] (* Zerinvary Lajos, Jul 09 2009 *)
    LinearRecurrence[{2, 1, -2, -1}, {0, 1, 2, 6}, 34] (* or *)
    CoefficientList[ Series[(x + x^3)/(-1 + x + x^2)^2, {x, 0, 35}], x] (* Robert G. Wilson v, Nov 14 2015 *)
  • PARI
    Lucas(n)=fibonacci(n-1)+fibonacci(n+1)
    a(n)=polcoeff(sum(m=1,n,eulerphi(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n) \\ Paul D. Hanna, Jan 12 2012
    
  • PARI
    a(n)=n*fibonacci(n) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    concat(0, Vec(x*(1+x^2)/(1-x-x^2)^2 + O(x^100))) \\ Altug Alkan, Oct 28 2015
    

Formula

G.f.: x*(1+x^2)/(1-x-x^2)^2.
G.f.: Sum_{n>=1} phi(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Fibonacci(n)*x^n, where phi(n) = A000010(n) and Lucas(n) = A000204(n). - Paul D. Hanna, Jan 12 2012
a(n) = a(n-1) + a(n-2) + L(n-1). - Gary Detlefs, Dec 29 2012
a(n) = F(n+1) + Sum_{k=1..n-2} F(k)*L(n-k), F = A000045 and L = A000032. - Gary Detlefs, Dec 29 2012
a(n) = F(2*n)/Sum_{k=0..floor(n/2)} binomial(n-k,k)/(n-k). - Gary Detlefs, Jan 19 2013
a(n) = A014965(n) * A104714(n). - Michel Marcus, Oct 24 2013
a(n) = 3*A001629(n+1) - A001629(n+2) + A000045(n-1). - Ralf Stephan, Apr 26 2014
a(n) = 2*n*(F(n-2) + floor(F(n-3)/2)) + (n^3 mod 3*n), F = A000045. - Gary Detlefs, Jun 06 2014
E.g.f.: x*(exp(-x/phi)/phi + exp(x*phi)*phi)/sqrt(5), where phi = (1+sqrt(5))/2. - Vladimir Reshetnikov, Oct 28 2015
This is a divisibility sequence and is generated by x^4 - 2*x^3 - x^2 + 2*x + 1. - R. K. Guy, Nov 13 2015
a(n) = L'(n, 1), the first derivative of the n-th Lucas polynomial evaluated at 1. - Andrés Ventas, Nov 12 2021
Sum_{n>=0} a(n)/2^n = 10 (Euler, 1990). - Amiram Eldar, Jan 22 2022

Extensions

Incorrect formula removed by Gary Detlefs, Oct 27 2011

A074215 Numbers m such that m and F(m) are relatively prime, where F(m) denotes the m-th Fibonacci number.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 11, 13, 14, 16, 17, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 49, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 67, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 83, 86, 87, 88, 89, 92, 93, 94, 97, 98, 99, 101
Offset: 1

Views

Author

Benoit Cloitre, Sep 17 2002

Keywords

Comments

Sanna and Tron proved that a(n) is asymptotic to c*n, for some constant c > 0. - Carlo Sanna, May 11 2017
For k from 1 to 9, a(10^k) is equal to 14, 154, 1553, 15578, 155786, 1557934, 15579574, 155796106, 1557962159. - Giovanni Resta, May 11 2017
The asymptotic density of this sequence is Sum_{k>=1} mu(k)/lcm(k, A001177(k)), where mu is the Möbius function (A008683) (Sanna and Tron, 2018). - Amiram Eldar, Aug 07 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[200], GCD[#, Fibonacci[#]] == 1 &] (* T. D. Noe, Jun 13 2012 *)
  • PARI
    isok(n) = gcd(n, fibonacci(n)) == 1; \\ Michel Marcus, May 05 2017

Formula

a(n) is probably asymptotic to c*n with c=1.55(8).....

A270313 Denominator of Fibonacci(n)/n.

Original entry on oeis.org

1, 2, 3, 4, 1, 3, 7, 8, 9, 2, 11, 1, 13, 14, 3, 16, 17, 9, 19, 4, 21, 22, 23, 1, 1, 26, 27, 28, 29, 3, 31, 32, 33, 34, 7, 1, 37, 38, 39, 8, 41, 21, 43, 44, 9, 46, 47, 1, 49, 2, 51, 52, 53, 27, 11, 8, 57, 58, 59, 1, 61, 62, 63, 64, 13, 33, 67, 68, 69, 14, 71, 1, 73, 74, 3
Offset: 1

Views

Author

Keywords

Comments

a(n) = 1 for n in A023172; a(n) = n for n in A074215. - Robert Israel, Mar 16 2016

Crossrefs

Cf. A000045, A023172, A074215, A104714, A127787, A270312 (numerators).

Programs

  • Maple
    seq(n/igcd(n,combinat:-fibonacci(n)), n=1..100); # Robert Israel, Mar 16 2016
  • Mathematica
    Table[Fibonacci[n]/n, {n, 1, 100}] // Denominator
  • PARI
    a(n) = denominator(fibonacci(n)/n); \\ Michel Marcus, Mar 16 2016

Formula

a(n) = n/A104714(n). - Robert Israel, Mar 16 2016

A105285 Indices of Lucas 3-step numbers A001644 which have a nontrivial divisor in common with index.

Original entry on oeis.org

6, 15, 18, 21, 35, 39, 44, 45, 54, 55, 57, 78, 80, 84, 90, 93, 96, 117, 120, 123, 132, 133, 135, 140, 147, 154, 156, 162, 171, 174, 195, 201, 210, 213, 234, 235, 240, 245, 247, 249, 252, 259, 264, 273, 275, 279, 286, 288, 290, 291, 295, 299, 312, 318, 323, 327
Offset: 1

Views

Author

Jonathan Vos Post, Apr 25 2005

Keywords

Comments

Extension by T. D. Noe. Wanted: closed-form formula for this as exists for Fibonacci and Lucas numbers. See also A105762 (prime Lucas 3-step numbers).

Examples

			gcd(6, A001644(6)) = gcd(6,39) = 3,
gcd(21, A001644(21)) = gcd(21,361109) = 7.
		

Crossrefs

Programs

  • Mathematica
    m=300; s = LinearRecurrence[{1, 1, 1}, {3, 1, 3}, m+1]; Select[Range[m], !CoprimeQ[#, s[[#+1]]] &] (* Amiram Eldar, Sep 05 2019 *)

Formula

gcd(a(n), A001644(a(n))) > 1.

Extensions

More terms from Amiram Eldar, Sep 05 2019

A105289 Indices of Lucas 5-step numbers A074048 which have a nontrivial divisor in common with index.

Original entry on oeis.org

6, 12, 18, 20, 21, 33, 36, 48, 51, 54, 55, 60, 75, 78, 87, 99, 100, 108, 110, 112, 114, 120, 129, 132, 133, 144, 147, 153, 154, 155, 159, 162, 165, 174, 177, 180, 182, 183, 185, 195, 210, 219, 225, 228, 230, 234, 237, 245, 261, 267, 270, 275, 285, 290, 297, 310
Offset: 1

Views

Author

Jonathan Vos Post, Apr 25 2005

Keywords

Comments

Extension by T. D. Noe. Wanted: closed-form formula for this as exists for Fibonacci and Lucas numbers. See also A105764 (indices of prime Lucas 5-step numbers).

Examples

			gcd(6, A074048(6)) = gcd(6,57) = 3,
gcd(20, A074048(20)) = gcd(20,743775) = 5.
gcd(21, A074048(21)) = gcd(21,1462223) = 7.
		

Crossrefs

Programs

  • Mathematica
    m=300; s = LinearRecurrence[{1, 1, 1, 1, 1}, {5, 1, 3, 7, 15}, m+1]; Select[Range[m], !CoprimeQ[#, s[[#+1]]] &] (* Amiram Eldar, Sep 05 2019 *)

Formula

gcd(a(n), A074048(a(n))) > 1.

Extensions

More terms from Amiram Eldar, Sep 05 2019

A260222 a(n)=gcd(n,F(n-1)), where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 11, 1, 1, 1, 1, 2, 1, 1, 19, 1, 3, 2, 1, 1, 1, 1, 1, 2, 29, 1, 31, 1, 3, 2, 1, 1, 1, 1, 1, 2, 41, 1, 1, 1, 3, 2, 1, 1, 7, 1, 1, 2, 1, 1, 1, 1, 3, 2, 59, 1, 61, 1, 1, 2, 1, 1, 1, 1, 3, 2, 71, 1, 1, 1, 1, 2, 1, 13, 79, 1, 3, 2, 1
Offset: 1

Views

Author

Dmitry Kamenetsky, Jul 19 2015

Keywords

Comments

This sequence seems good at generating primes, in particular, twin primes. Many primes p are generated when a(p)=p. In fact for n<=10000, a(n)=n occurs 617 times and 609 of these times n is prime. Furthermore, 275 of these times n is also a twin prime.
For n<=1000000 and a(n)=n this sequence generates 39210 primes (49.95% of primes in the range) and produces a prime 99.75% of the time. At the same time it generates 10864 twin primes, which is 66.50% of all twin primes in the range.
A260228 is a similar sequence that produces more primes.
It is well known that p|F(p-(p/5)) for every prime p. So a(p) = p for any prime p == 1,4 (mod 5). - Zhi-Wei Sun, Aug 29 2015

Examples

			a(2) = gcd(2,F(1)) = gcd(2,1) = 1.
a(11) = gcd(11,F(10)) = gcd(11,55) = 11.
a(19) = gcd(19,2584) = 19.
a(29) = gcd(29,317811) = 29.
		

Crossrefs

Programs

  • Magma
    [Gcd(n,Fibonacci(n-1)): n in [1..90]]; // Vincenzo Librandi, Jul 20 2015
  • Mathematica
    Table[GCD[n, Fibonacci[n-1]], {n, 1, 80}] (* Vincenzo Librandi, Jul 20 2015 *)
  • PARI
    a(n)=gcd(n,fibonacci(n-1))
    first(m)=vector(m,n,a(n+1)) /* Anders Hellström, Jul 19 2015 */
    

A083019 Number of common divisors of n and F(n) where F(n) denotes the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 6, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 8, 3, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 9, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 10, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 12, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 12, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 6, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 2, 12, 1, 1, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Benoit Cloitre, May 31 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length[Intersection[Divisors[n],Divisors[Fibonacci[n]]]],{n,120}] (* Harvey P. Dale, Aug 24 2014 *)
    a[n_] := DivisorSigma[0, GCD[n, Fibonacci[n]]]; Array[a, 100] (* Amiram Eldar, Oct 18 2019 *)
  • PARI
    a(n) = length(setintersect(divisors(n), divisors(fibonacci(n)))); \\ Michel Marcus, Dec 04 2013

Formula

a(n) = A000005(A104714(n)). - Amiram Eldar, Jun 09 2022

A286308 Numbers m such that gcd(m, F(m)) = 2, where F(m) denotes the m-th Fibonacci number.

Original entry on oeis.org

6, 18, 42, 54, 66, 78, 102, 114, 126, 138, 162, 174, 186, 198, 222, 234, 246, 258, 282, 294, 318, 354, 366, 378, 402, 414, 426, 438, 462, 474, 486, 498, 522, 534, 558, 582, 594, 606, 618, 642, 654, 666, 678, 702, 714, 726, 738, 762, 774, 786, 798, 822, 834, 846, 858
Offset: 1

Views

Author

Michel Marcus, May 05 2017

Keywords

Comments

From Amiram Eldar, Aug 07 2020: (Start)
All the terms are divisible by 6.
Sanna and Tron proved that for all k > 0 (2 in this sequence) the asymptotic density of the sequence of numbers m such that gcd(m, F(m)) = k exists and is equal to Sum_{i>=1} mu(i)/lcm(k*i, A001177(k*i)), where mu is the Möbius function (A008683) and A001177(m) is the least number j such that F(j) is divisible by m.
The numbers of terms not exceeding 10^k for k = 1, 2, ... are 1, 6, 62, 625, 6248, 62499, 624900, ... (End)

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 1001], GCD[#, Fibonacci[#]]==2 &] (* Indranil Ghosh, May 06 2017 *)
  • PARI
    isok(n) = gcd(n, fibonacci(n)) == 2;
    
  • Python
    from sympy import fibonacci, gcd
    [n for n in range(1001) if gcd(n, fibonacci(n)) == 2] # Indranil Ghosh, May 06 2017

A299144 a(n) is the least i such that gcd(Fibonacci(i), i+x) > 1 for all x=0..n.

Original entry on oeis.org

5, 10, 18, 30, 30, 30, 30, 180, 180, 180, 180, 840, 840, 1260, 1260, 1260, 1260, 24480, 24480, 63000, 63000, 63000, 63000, 63000, 63000, 63000, 63000, 63000, 63000, 356400, 356400, 356400, 356400, 356400, 356400, 356400, 356400, 5783400, 5783400, 5783400, 5783400, 5783400, 5783400
Offset: 0

Views

Author

Alex Ratushnyak, Feb 03 2018

Keywords

Examples

			5 is the smallest integer i such that gcd(F(i), i) > 1, because F(5)=5. Therefore a(0)=5.
10 is the smallest integer i such that gcd(F(i), i) > 1 and gcd(F(i), i+1) > 1, because F(10)=55, not coprime to 10 nor 11. Therefore a(1)=10.
		

Crossrefs

Programs

  • Mathematica
    Nest[Function[a, Append[a, SelectFirst[Range[10^5], Function[i, AllTrue[i + Range[0, Length@ a], ! CoprimeQ[Fibonacci@ i, #] &]]]]], {}, 29] (* Michael De Vlieger, Feb 05 2018 *)
  • PARI
    isok(k, n) = {for (x=0, n, if (gcd(fibonacci(k), k+x) == 1, return(0));); return(1);}
    a(n) = {my(k=1); while (!isok(k,n), k++); k;} \\ Michel Marcus, Feb 05 2018
  • Python
    p0=0
    p1=1
    def GCD(x,y):
        tmp = y
        y = x % y
        if y==0: return tmp
        return GCD(tmp, y)
    n=0
    for i in range(1,1000000):
        p0,p1 = p1, p0+p1
        for x in range(1000000):
            if GCD(p0,i+x)==1: break
        for j in range(n, x):
            print(i)
        if x>n: n=x
    

Extensions

a(29)-a(36) from Michael De Vlieger, Feb 05 2018
a(37)-a(42) from Jon E. Schoenfield, Apr 24 2018
Showing 1-10 of 10 results.