Original entry on oeis.org
1, -1, 3, 1, -8, 13, 1, 11, -61, 73, -19, 66, 66, -494, 501, 151, -993, 2102, -298, -4293, 4051, -1091, 9528, -33249, 52816, -21069, -39528, 37633, 7841, -82857, 378261, -929101, 1207299, -560187, -375289, 394353, -56519, 692422, -3832928, 12255802, -23834210, 26643994, -12620672, -3481562, 4596553
Offset: 1
-
CoefficientList[#, t] & /@ (# Range@Length@#!) &@ Rest@CoefficientList[(t-1) / (t - Exp[x(t-1)/(1-x(t-1))]) + O[x]^10 // Simplify, x] // Flatten (* Andrey Zabolotskiy, Feb 19 2024 *)
-
T(n) = [Vecrev(p) | p<-Vec(-1 + serlaplace((y-1) / (y - exp(x*(y-1)/(1-x*(y-1)) + O(x*x^n) ))))]
{ my(A=T(7)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 19 2024
A111596
The matrix inverse of the unsigned Lah numbers A271703.
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 6, -6, 1, 0, -24, 36, -12, 1, 0, 120, -240, 120, -20, 1, 0, -720, 1800, -1200, 300, -30, 1, 0, 5040, -15120, 12600, -4200, 630, -42, 1, 0, -40320, 141120, -141120, 58800, -11760, 1176, -56, 1, 0, 362880, -1451520, 1693440, -846720, 211680, -28224, 2016, -72, 1
Offset: 0
Binomial convolution of row polynomials: p(3,x) = 6*x-6*x^2+x^3; p(2,x) = -2*x+x^2, p(1,x) = x, p(0,x) = 1,
together with those from A111595: s(3,x) = 9*x-6*x^2+x^3; s(2,x) = 1-2*x+x^2, s(1,x) = x, s(0,x) = 1; therefore
9*(x+y)-6*(x+y)^2+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = (6*y-6*y^2+y^3) + 3*x*(-2*y+y^2) + 3*(1-2*x+x^2)*y + 9*x-6*x^2+x^3.
From _Wolfdieter Lang_, Apr 28 2014: (Start)
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7
0: 1
1: 0 1
2: 0 -2 1
3: 0 6 -6 1
4: 0 -24 36 -12 1
5: 0 120 -240 120 -20 1
6: 0 -720 1800 -1200 300 -30 1
7: 0 5040 -15120 12600 -4200 630 -42 1
...
For more rows see the link.
(End)
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- Wolfdieter Lang, The first 11 rows of the triangle.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Paul Barry, The Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms, J. Int. Seq. 13 (2010) # 10.8.4, example 4.
- Paul Barry, Exponential Riordan Arrays and Permutation Enumeration, J. Int. Seq. 13 (2010) # 10.9.1, example 6.
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 20.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv preprint arXiv:1105.3044 [math.CO], 2011, also J. Int. Seq. 14 (2011) 11.6.7.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers; Generators, Inversion, and Matrix, Binomial, and Integral Transforms; Lagrange a la Lah
- A. Hennessy and P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2.
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Mathoverflow, Pochhammer symbol of a differential, and hypergeometric polynomials, a question posed by Emilio Pisanty and answered by Tom Copeland, 2012.
- J. Taylor, Counting words with Laguerre polynomials, DMTCS Proc., Vol. AS, 2013, p. 1131-1142. [_Tom Copeland_, Jan 08 2016] [Broken link]
- J. Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 96. [_Tom Copeland_, Dec 20 2018]
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
A002868 gives maximal element (in magnitude) in each row.
Cf.
A130561 for a natural refinement.
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> `if`(n::odd, -(n+1)!, (n+1)!), 9); # Peter Luschny, Jan 27 2016
-
a[0, 0] = 1; a[n_, m_] := ((-1)^(n-m))*(n!/m!)*Binomial[n-1, m-1]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
T[ n_, k_] := (-1)^n n! Coefficient[ LaguerreL[ n, -1, x], x, k]; (* Michael Somos, Dec 15 2014 *)
rows = 9;
t = Table[(-1)^(n+1) n!, {n, 1, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
{T(n, k) = if( n<1 || k<1, n==0 && k==0, (-1)^n * n! * polcoeff( sum(k=1, n, binomial( n-1, k-1) * (-x)^k / k!), k))}; /* Michael Somos, Dec 15 2014 */
-
lah_number = lambda n, k: factorial(n-k)*binomial(n,n-k)*binomial(n-1,n-k)
A111596_row = lambda n: [(-1)^(n-k)*lah_number(n, k) for k in (0..n)]
for n in range(10): print(A111596_row(n)) # Peter Luschny, Oct 05 2014
-
# uses[inverse_bell_transform from A264429]
def A111596_matrix(dim):
fact = [factorial(n) for n in (1..dim)]
return inverse_bell_transform(dim, fact)
A111596_matrix(10) # Peter Luschny, Dec 20 2015
A293604
Expansion of e.g.f.: exp(x * (1 - x)).
Original entry on oeis.org
1, 1, -1, -5, 1, 41, 31, -461, -895, 6481, 22591, -107029, -604031, 1964665, 17669471, -37341149, -567425279, 627491489, 19919950975, -2669742629, -759627879679, -652838174519, 31251532771999, 59976412450835, -1377594095061119, -4256461892701199
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x-x^2) ))); // G. C. Greubel, Jul 12 2024
-
CoefficientList[Series[E^(x*(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 13 2017 *)
-
my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-x))))
-
a(n) = polhermite(n, 1/2); \\ Michel Marcus, Oct 13 2017
-
[hermite(n, 1/2) for n in range(31)] # G. C. Greubel, Jul 12 2024
A293116
Expansion of e.g.f. exp(x/(x-1)).
Original entry on oeis.org
1, -1, -1, -1, 1, 19, 151, 1091, 7841, 56519, 396271, 2442439, 7701409, -145269541, -4833158329, -104056218421, -2002667085119, -37109187217649, -679877731030049, -12440309297451121, -227773259993414719, -4155839606711748061, -74724654677947488521
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, -add(
a(n-j)*binomial(n-1, j-1)*j!, j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 30 2017
-
CoefficientList[Series[E^(-x/(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2017 *)
-
my(x='x+O('x^66)); Vec(serlaplace(exp(x/(x-1))))
Original entry on oeis.org
1, 1, 1, -1, -19, -151, -1091, -7841, -56519, -396271, -2442439, -7701409, 145269541, 4833158329, 104056218421, 2002667085119, 37109187217649, 679877731030049, 12440309297451121, 227773259993414719, 4155839606711748061, 74724654677947488521, 1293162252850914402221
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(x-1))/(1-x)^2)); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2018
-
a := n -> n!*hypergeom([1-n], [2], 1):
seq(simplify(a(n)), n=1..19); # Peter Luschny, Mar 30 2015
-
CoefficientList[Series[E^(x/(x-1))/(1-x)^2, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 13 2014 *)
Table[Sum[-BellY[n+1, k, -Range[n+1]!], {k, n+1}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
x='x+O('x^30); Vec(serlaplace(exp(x/(x-1))/(1-x)^2)) \\ G. C. Greubel, May 15 2018
-
A066668 = lambda n: (-1)^n*hypergeometric([-n-1,-n-1,-n],[-n-1],-1)
[Integer(A066668(n).n(100)) for n in range(23)] # Peter Luschny, Sep 22 2014
A129652
Exponential Riordan array [e^(x/(1-x)),x].
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 13, 9, 3, 1, 73, 52, 18, 4, 1, 501, 365, 130, 30, 5, 1, 4051, 3006, 1095, 260, 45, 6, 1, 37633, 28357, 10521, 2555, 455, 63, 7, 1, 394353, 301064, 113428, 28056, 5110, 728, 84, 8, 1, 4596553, 3549177, 1354788, 340284, 63126, 9198, 1092, 108, 9, 1
Offset: 0
Triangle begins:
1;
1, 1;
3, 2, 1;
13, 9, 3, 1;
73, 52, 18, 4, 1;
501, 365, 130, 30, 5, 1;
4051, 3006, 1095, 260, 45, 6, 1;
...
-
A129652 := (n, k) -> (-1)^(k-n+1)*binomial(n,k)*KummerU(k-n+1, 2, -1);
seq(seq(round(evalf(A129652(n,k),99)),k=0..n),n=0..9); # Peter Luschny, Sep 17 2014
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1$2], add((p-> p+
[0, p[1]*x^j])(b(n-j)*binomial(n-1, j-1)*j!), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i)/i!, i=0..n))(b(n)[2]):
seq(T(n), n=0..10); # Alois P. Heinz, Feb 21 2022
-
T[n_, k_] := If[k==n, 1, n!/k! Sum[Binomial[n-k-1, j]/(j+1)!, {j, 0, n-k-1}]];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 14 2019 *)
A318215
Expansion of e.g.f. exp(x/(1 + x)^2).
Original entry on oeis.org
1, 1, -3, 7, 1, -219, 2581, -22973, 162177, -554039, -10506419, 343049631, -6846400703, 113528248237, -1609627861659, 17371462450651, -36066494745599, -5681921495461743, 243263898097515037, -7398126521141652809, 193119003246643917441, -4476119490014676723659, 89171014860669488040757
Offset: 0
-
A318215 := proc(n)
add((-1)^(n-k)*binomial(n+k-1,2*k-1)*n!/k!,k=0..n) ;
end proc:
seq(A318215(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
-
nmax = 22; CoefficientList[Series[Exp[x/(1 + x)^2], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) Binomial[n + k - 1, 2 k - 1] n!/k!, {k, 0, n}], {n, 0, 22}]
a[n_] := a[n] = Sum[(-1)^(k + 1) k k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
Join[{1}, Table[(-1)^(n + 1) n n! HypergeometricPFQ[{1 - n, 1 + n}, {3/2, 2}, 1/4], {n, 22}]]
A383991
Series expansion of the exponential generating function exp(-tridend(-x)) - 1 where tridend(x) = (1 - 3*x - sqrt(1-6*x+x^2)) / (4*x) (A001003).
Original entry on oeis.org
0, 1, -5, 49, -743, 15421, -407909, 13135165, -498874991, 21838772377, -1082819193029, 59983280191561, -3671752681190615, 246130081055714389, -17932045676505509093, 1410893903131294766101, -119227840965746009631839, 10769985399394862863318705
Offset: 0
Cf.
A003725,
A097388,
A111884,
A112242,
A177885,
A318215,
A383987,
A383990,
A383992,
A383993,
A383994,
A383995.
-
nn = 19; f[x_] := Exp[x] - 1;
Range[0, nn]! * CoefficientList[Series[f[(1 + 3*x - Sqrt[1 + 6*x + x^2])/(4*x)], {x, 0, nn}], x]
A383995
Series expansion of the exponential generating function exp(ff6^!(x)) - 1 where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3).
Original entry on oeis.org
0, 1, -11, 61, -215, -1559, 62941, -1371131, 26310481, -474554735, 7824076741, -98881279859, -176260664711, 87457412423161, -5077434546358355, 234510433823788501, -10016559114085864799, 413333665704129673249, -16704968283664639137899, 660340818239784197391325
Offset: 0
Cf.
A003725,
A097388,
A111884,
A112242,
A177885,
A318215,
A383989,
A383990,
A383991,
A383992,
A383993,
A383994.
-
nn = 19; f[x_] := Exp[x] - 1;
Range[0, nn]! * CoefficientList[Series[f[x*(1 - 3*x - x^2 + x^3)/(1 + 3*x + x^2 - x^3)], {x, 0, nn}], x]
A088312
Number of sets of lists (cf. A000262) with even number of lists.
Original entry on oeis.org
1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536, 29668681, 413257790, 6238931821, 101415565836, 1765092183037, 32734873484250, 644215775792401, 13404753632014352, 293976795292186897, 6775966692145553526, 163735077313046119861, 4138498600079573989140
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..444
- Peter Bala, Integer sequences that become periodic on reduction modulo k for all k
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- N. J. A. Sloane, LAH transform
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Cosh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
-
b:= proc(n, t) option remember; `if`(n=0, t, add(
b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
A088312 := n -> ifelse(n=0, 1, (1/2)*(n - 1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4)): seq(simplify(A088312(n)), n = 0..21); # Peter Luschny, Dec 14 2022
-
With[{m=30}, CoefficientList[Series[Cosh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
Table[Sum[n!/(2*k)! Binomial[n - 1, 2*k - 1], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Emanuele Munarini, Sep 03 2017 *)
-
def A088312_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( cosh(x/(1-x)) ).egf_to_ogf().list()
A088312_list(40) # G. C. Greubel, Dec 13 2022
Showing 1-10 of 28 results.
Next
Comments