cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A131202 A coefficient tree from the list partition transform relating A111884, A084358, A000262, A094587, A128229 and A131758.

Original entry on oeis.org

1, -1, 3, 1, -8, 13, 1, 11, -61, 73, -19, 66, 66, -494, 501, 151, -993, 2102, -298, -4293, 4051, -1091, 9528, -33249, 52816, -21069, -39528, 37633, 7841, -82857, 378261, -929101, 1207299, -560187, -375289, 394353, -56519, 692422, -3832928, 12255802, -23834210, 26643994, -12620672, -3481562, 4596553
Offset: 1

Views

Author

Tom Copeland, Oct 22 2007, Nov 30 2007

Keywords

Comments

Construct the infinite array of polynomials
a(0,t) = 1
a(1,t) = 1
a(2,t) = -1 + 3*t
a(3,t) = 1 - 8*t + 13*t^2
a(4,t) = 1 + 11*t - 61*t^2 + 73*t^3
a(5,t) = -19 + 66*t + 66*t^2 - 494*t^3 + 501*t^4
a(6,t) = 151 - 993*t + 2102*t^2 - 298*t^3 - 4293*t^4 + 4051*t^5
This array is the reciprocal array of the following array b(n,t) under the list partition transform and its associated operations described in A133314.
b(0,t) = 1 and b(n,t) = -A000262(n)*(t-1)^(n-1) for n > 0.
Then A111884(n) = a(n,0).
Lower triangular matrix A094587 = binomial(n,k)*a(n-k,1).
A084358(n) = a(n,2).
Signed A128229 = matrix inverse of binomial(n,k)*a(n-k,1) = binomial(n,k)*b(n-k,1) = A132013.
As t tends to infinity, a(n,t)/t^(n-1) tends to A000262(n) for n > 0.
The P(n,t) of A131758 can be constructed from T(n,k,t) = binomial(n,k)*a(n-k,t) by letting T(n,k,t) multiply the column vector c(n,t) given by c(0,t) = 0! and c(n,t) = n!*(t-1)^(n-1) for n > 0. The P(n,t) have rich associations to other sequences.

Programs

  • Mathematica
    CoefficientList[#, t] & /@ (# Range@Length@#!) &@ Rest@CoefficientList[(t-1) / (t - Exp[x(t-1)/(1-x(t-1))]) + O[x]^10 // Simplify, x] // Flatten (* Andrey Zabolotskiy, Feb 19 2024 *)
  • PARI
    T(n) = [Vecrev(p) | p<-Vec(-1 + serlaplace((y-1) / (y - exp(x*(y-1)/(1-x*(y-1)) + O(x*x^n) ))))]
    { my(A=T(7)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 19 2024

Formula

E.g.f. for the row polynomials, which are a(n, t) for n > 0, is:
(t-1) / (t - exp(x*(t-1)/(1-x*(t-1)))).
E.g.f. for the polynomials b(n, t), introduced above, is the reciprocal of that.

Extensions

Rows 7-9 added and offset changed by Andrey Zabolotskiy, Feb 19 2024

A111596 The matrix inverse of the unsigned Lah numbers A271703.

Original entry on oeis.org

1, 0, 1, 0, -2, 1, 0, 6, -6, 1, 0, -24, 36, -12, 1, 0, 120, -240, 120, -20, 1, 0, -720, 1800, -1200, 300, -30, 1, 0, 5040, -15120, 12600, -4200, 630, -42, 1, 0, -40320, 141120, -141120, 58800, -11760, 1176, -56, 1, 0, 362880, -1451520, 1693440, -846720, 211680, -28224, 2016, -72, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Also the associated Sheffer triangle to Sheffer triangle A111595.
Coefficients of Laguerre polynomials (-1)^n * n! * L(n,-1,x), which equals (-1)^n * Lag(n,x,-1) below. Lag(n,Lag(.,x,-1),-1) = x^n evaluated umbrally, i.e., with (Lag(.,x,-1))^k = Lag(k,x,-1). - Tom Copeland, Apr 26 2014
Without row n=0 and column m=0 this is, up to signs, the Lah triangle A008297.
The unsigned column sequences are (with leading zeros): A000142, A001286, A001754, A001755, A001777, A001778, A111597-A111600 for m=1..10.
The row polynomials p(n,x) := Sum_{m=0..n} a(n,m)*x^m, together with the row polynomials s(n,x) of A111595 satisfy the exponential (or binomial) convolution identity s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), n>=0.
Exponential Riordan array [1,x/(1+x)]. Inverse of the exponential Riordan array [1,x/(1-x)], which is the unsigned version of A111596. - Paul Barry, Apr 12 2007
For the unsigned subtriangle without column number m=0 and row number n=0, see A105278.
Unsigned triangle also matrix product |S1|*S2 of Stirling number matrices.
The unsigned row polynomials are Lag(n,-x,-1), the associated Laguerre polynomials of order -1 with negated argument. See Gradshteyn and Ryzhik, Abramowitz and Stegun and Rota (Finite Operator Calculus) for extensive formulas. - Tom Copeland, Nov 17 2007, Sep 09 2008
An infinitesimal matrix generator for unsigned A111596 is given by A132792. - Tom Copeland, Nov 22 2007
From the formalism of A132792 and A133314 for n > k, unsigned A111596(n,k) = a(k) * a(k+1)...a(n-1) / (n-k)! = a generalized factorial, where a(n) = A002378(n) = n-th term of first subdiagonal of unsigned A111596. Hence Deutsch's remark in A002378 provides an interpretation of A111596(n,k) in terms of combinations of certain circular binary words. - Tom Copeland, Nov 22 2007
Given T(n,k)= A111596(n,k) and matrices A and B with A(n,k) = T(n,k)*a(n-k) and B(n,k) = T(n,k)*b(n-k), then A*B = C where C(n,k) = T(n,k)*[a(.)+b(.)]^(n-k), umbrally. - Tom Copeland, Aug 27 2008
Operationally, the unsigned row polynomials may be expressed as p_n(:xD:) = x*:Dx:^n*x^{-1}=x*D^nx^n*x^{-1}= n!*binomial(xD+n-1,n) = (-1)^n n! binomial(-xD,n) = n!L(n,-1,-:xD:), where, by definition, :AB:^n = A^nB^n for any two operators A and B, D = d/dx, and L(n,-1,x) is the Laguerre polynomial of order -1. A similarity transformation of the operators :Dx:^n generates the higher order Laguerre polynomials, which can also be expressed in terms of rising or falling factorials or Kummer's confluent hypergeometric functions (cf. the Mathoverflow post). - Tom Copeland, Sep 21 2019

Examples

			Binomial convolution of row polynomials: p(3,x) = 6*x-6*x^2+x^3; p(2,x) = -2*x+x^2, p(1,x) = x, p(0,x) = 1,
together with those from A111595: s(3,x) = 9*x-6*x^2+x^3; s(2,x) = 1-2*x+x^2, s(1,x) = x, s(0,x) = 1; therefore
9*(x+y)-6*(x+y)^2+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = (6*y-6*y^2+y^3) + 3*x*(-2*y+y^2) + 3*(1-2*x+x^2)*y + 9*x-6*x^2+x^3.
From _Wolfdieter Lang_, Apr 28 2014: (Start)
The triangle a(n,m) begins:
n\m  0     1       2       3      4     5   6  7
0:   1
1:   0     1
2:   0    -2       1
3:   0     6      -6       1
4:   0   -24      36     -12      1
5:   0   120    -240     120    -20     1
6:   0  -720    1800   -1200    300   -30   1
7:   0  5040  -15120   12600  -4200   630 -42  1
...
For more rows see the link.
(End)
		

Crossrefs

Row sums: A111884. Unsigned row sums: A000262.
A002868 gives maximal element (in magnitude) in each row.
Cf. A130561 for a natural refinement.
Cf. A264428, A264429, A271703 (unsigned).
Cf. A008297, A089231, A105278 (variants).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n::odd, -(n+1)!, (n+1)!), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    a[0, 0] = 1; a[n_, m_] := ((-1)^(n-m))*(n!/m!)*Binomial[n-1, m-1]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
    T[ n_, k_] := (-1)^n n! Coefficient[ LaguerreL[ n, -1, x], x, k]; (* Michael Somos, Dec 15 2014 *)
    rows = 9;
    t = Table[(-1)^(n+1) n!, {n, 1, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}]  // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    {T(n, k) = if( n<1 || k<1, n==0 && k==0, (-1)^n * n! * polcoeff( sum(k=1, n, binomial( n-1, k-1) * (-x)^k / k!), k))}; /* Michael Somos, Dec 15 2014 */
  • Sage
    lah_number = lambda n, k: factorial(n-k)*binomial(n,n-k)*binomial(n-1,n-k)
    A111596_row = lambda n: [(-1)^(n-k)*lah_number(n, k) for k in (0..n)]
    for n in range(10): print(A111596_row(n)) # Peter Luschny, Oct 05 2014
    
  • Sage
    # uses[inverse_bell_transform from A264429]
    def A111596_matrix(dim):
        fact = [factorial(n) for n in (1..dim)]
        return inverse_bell_transform(dim, fact)
    A111596_matrix(10) # Peter Luschny, Dec 20 2015
    

Formula

E.g.f. m-th column: ((x/(1+x))^m)/m!, m>=0.
E.g.f. for row polynomials p(n, x) is exp(x*y/(1+y)).
a(n, m) = ((-1)^(n-m))*|A008297(n, m)| = ((-1)^(n-m))*(n!/m!)*binomial(n-1, m-1), n>=m>=1; a(0, 0)=1; else 0.
a(n, m) = -(n-1+m)*a(n-1, m) + a(n-1, m-1), n>=m>=0, a(n, -1):=0, a(0, 0)=1; a(n, m)=0 if n
|a(n,m)| = Sum_{k=m..n} |S1(n,k)|*S2(k,m), n>=0. S2(n,m):=A048993. S1(n,m):=A048994. - Wolfdieter Lang, May 04 2007
From Tom Copeland, Nov 21 2011: (Start)
For this Lah triangle, the n-th row polynomial is given umbrally by
(-1)^n n! binomial(-Bell.(-x),n), where Bell_n(-x)= exp(x)(xd/dx)^n exp(-x), the n-th Bell / Touchard / exponential polynomial with neg. arg., (cf. A008277). E.g., 2! binomial(-Bell.(-x),2) = -Bell.(-x)*(-Bell.(-x)-1) = Bell_2(-x)+Bell_1(-x) = -2x+x^2.
A Dobinski relation is (-1)^n n! binomial(-Bell.(-x),n)= (-1)^n n! e^x Sum_{j>=0} (-1)^j binomial(-j,n)x^j/j!= n! e^x Sum_{j>=0} (-1)^j binomial(j-1+n,n)x^j/j!. See the Copeland link for the relation to inverse Mellin transform. (End)
The n-th row polynomial is (-1/x)^n e^x (x^2*D_x)^n e^(-x). - Tom Copeland, Oct 29 2012
Let f(.,x)^n = f(n,x) = x!/(x-n)!, the falling factorial,and r(.,x)^n = r(n,x) = (x-1+n)!/(x-1)!, the rising factorial, then the Lah polynomials, Lah(n,t)= n!*Sum{k=1..n} binomial(n-1,k-1)(-t)^k/k! (extra sign factor on odd rows), give the transform Lah(n,-f(.,x))= r(n,x), and Lah(n,r(.,x))= (-1)^n * f(n,x). - Tom Copeland, Oct 04 2014
|T(n,k)| = Sum_{j=0..2*(n-k)} A254881(n-k,j)*k^j/(n-k)!. Note that A254883 is constructed analogously from A254882. - Peter Luschny, Feb 10 2015
The T(n,k) are the inverse Bell transform of [1!,2!,3!,...] and |T(n,k)| are the Bell transform of [1!,2!,3!,...]. See A264428 for the definition of the Bell transform and A264429 for the definition of the inverse Bell transform. - Peter Luschny, Dec 20 2015
Dividing each n-th diagonal by n!, where the main diagonal is n=1, generates a shifted, signed Narayana matrix A001263. - Tom Copeland, Sep 23 2020

Extensions

New name using a comment from Wolfdieter Lang by Peter Luschny, May 10 2021

A293604 Expansion of e.g.f.: exp(x * (1 - x)).

Original entry on oeis.org

1, 1, -1, -5, 1, 41, 31, -461, -895, 6481, 22591, -107029, -604031, 1964665, 17669471, -37341149, -567425279, 627491489, 19919950975, -2669742629, -759627879679, -652838174519, 31251532771999, 59976412450835, -1377594095061119, -4256461892701199
Offset: 0

Author

Seiichi Manyama, Oct 12 2017

Keywords

Crossrefs

Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), this sequence (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!(Laplace( Exp(x-x^2) ))); // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    CoefficientList[Series[E^(x*(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 13 2017 *)
  • PARI
    my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-x))))
    
  • PARI
    a(n) = polhermite(n, 1/2); \\ Michel Marcus, Oct 13 2017
    
  • SageMath
    [hermite(n, 1/2) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

a(n) = (-1)^n * A000321(n).
a(n) = a(n-1) - 2 * (n-1) * a(n-2) for n > 1.
E.g.f.: Product_{k>=1} (1 + x^k)^(mu(k)/k). - Ilya Gutkovskiy, May 23 2019
a(n) = Hermite(n, 1/2). - G. C. Greubel, Jul 12 2024

A293116 Expansion of e.g.f. exp(x/(x-1)).

Original entry on oeis.org

1, -1, -1, -1, 1, 19, 151, 1091, 7841, 56519, 396271, 2442439, 7701409, -145269541, -4833158329, -104056218421, -2002667085119, -37109187217649, -679877731030049, -12440309297451121, -227773259993414719, -4155839606711748061, -74724654677947488521
Offset: 0

Author

Seiichi Manyama, Sep 30 2017

Keywords

Crossrefs

Column k=0 of A293119.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(
          a(n-j)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 30 2017
  • Mathematica
    CoefficientList[Series[E^(-x/(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2017 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(x/(x-1))))

Formula

E.g.f.: exp(x/(x-1)).
a(n) = (-1)^n * A111884(n).
E.g.f.: Product_{k>=1} (1 - x^k)^(phi(k)/k), where phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, May 25 2019
D-finite with recurrence a(n) +(-2*n+3)*a(n-1) +(n-1)*(n-2)*a(n-2)=0. - R. J. Mathar, Mar 13 2023

A066668 Signed row sums of A066667.

Original entry on oeis.org

1, 1, 1, -1, -19, -151, -1091, -7841, -56519, -396271, -2442439, -7701409, 145269541, 4833158329, 104056218421, 2002667085119, 37109187217649, 679877731030049, 12440309297451121, 227773259993414719, 4155839606711748061, 74724654677947488521, 1293162252850914402221
Offset: 0

Author

Christian G. Bower, Dec 17 2001

Keywords

Comments

Numerators in exp(x/(x+1)) power series (signs are different). - Benoit Cloitre, Mar 13 2002
Determinant of n X n matrix M=[m(i,j)] where m(i,i)=i, m(i,j)=1 if i>j, m(i,j)=j-i if j>i. - Vladeta Jovovic, Jan 19 2003

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(x-1))/(1-x)^2)); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2018
  • Maple
    a := n -> n!*hypergeom([1-n], [2], 1):
    seq(simplify(a(n)), n=1..19); # Peter Luschny, Mar 30 2015
  • Mathematica
    CoefficientList[Series[E^(x/(x-1))/(1-x)^2, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 13 2014 *)
    Table[Sum[-BellY[n+1, k, -Range[n+1]!], {k, n+1}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(x/(x-1))/(1-x)^2)) \\ G. C. Greubel, May 15 2018
    
  • Sage
    A066668 = lambda n: (-1)^n*hypergeometric([-n-1,-n-1,-n],[-n-1],-1)
    [Integer(A066668(n).n(100)) for n in range(23)] # Peter Luschny, Sep 22 2014
    

Formula

a(n) = n!LaguerreL(n, 1, 1). - Paul Barry, Sep 08 2004
E.g.f.: exp(x/(x-1))/(1-x)^2.
Conjecture: a(n) +(-2*n+1)*a(n-1) +n*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
E.g.f. with a different offset: 1 - product {n >= 1} (1 - x^n)^(phi(n)/n) = x + x^2/2 + x^3/6 - x^4/24 - 19*x^5/120 - ..., where phi(n) = A000010(n) is the Euler totient function. Cf. A000262. - Peter Bala, Jan 01 2014
a(n) = (-1)^n*hypergeom([-n-1,-n-1,-n],[-n-1],-1). - Peter Luschny, Sep 22 2014
a(n) = n!*hypergeom([1-n], [2], 1). - Peter Luschny, Mar 30 2015

A129652 Exponential Riordan array [e^(x/(1-x)),x].

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 13, 9, 3, 1, 73, 52, 18, 4, 1, 501, 365, 130, 30, 5, 1, 4051, 3006, 1095, 260, 45, 6, 1, 37633, 28357, 10521, 2555, 455, 63, 7, 1, 394353, 301064, 113428, 28056, 5110, 728, 84, 8, 1, 4596553, 3549177, 1354788, 340284, 63126, 9198, 1092, 108, 9, 1
Offset: 0

Author

Paul Barry, Apr 26 2007

Keywords

Comments

Satisfies the equation e^[x/(1-x),x] = e*[e^(x/(1-x)),x].
Row sums are A052844.
Antidiagonal sums are A129653.

Examples

			Triangle begins:
     1;
     1,    1;
     3,    2,    1;
    13,    9,    3,   1;
    73,   52,   18,   4,  1;
   501,  365,  130,  30,  5, 1;
  4051, 3006, 1095, 260, 45, 6, 1;
  ...
		

Crossrefs

Cf. A000262 (column 0), A052844 (row sums).
T(2n,n) gives A350461.

Programs

  • Maple
    A129652 := (n, k) -> (-1)^(k-n+1)*binomial(n,k)*KummerU(k-n+1, 2, -1);
    seq(seq(round(evalf(A129652(n,k),99)),k=0..n),n=0..9); # Peter Luschny, Sep 17 2014
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, [1$2], add((p-> p+
         [0, p[1]*x^j])(b(n-j)*binomial(n-1, j-1)*j!), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)/i!, i=0..n))(b(n)[2]):
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 21 2022
  • Mathematica
    T[n_, k_] := If[k==n, 1, n!/k! Sum[Binomial[n-k-1, j]/(j+1)!, {j, 0, n-k-1}]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 14 2019 *)

Formula

Number triangle T(n,k)=(n!/k!)*sum{i=0..n-k, C(n-k-1,i)/(n-k-i)!}
From Peter Bala, May 14 2012 : (Start)
Array is exp(S*(I-S)^(-1)) where S is A132440 the infinitesimal generator for Pascal's triangle.
Column 0 is A000262.
T(n,k) = binomial(n,k)*A000262(n-k).
So T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then arrange the remaining n-k elements into a set of lists. (End)
T(n,k) = (-1)^(k-n+1)*C(n,k)*KummerU(k-n+1, 2, -1). - Peter Luschny, Sep 17 2014
From Tom Copeland, Mar 11 2016: (Start)
The row polynomials P_n(x) form an Appell sequence with e.g.f. e^(t*P.(x)) = e^[t / (1-t)] e^(x*t), so the lowering and raising operators are L = d/dx = D and the R = x + 1 / (1-D)^2 = x + 1 + 2 D + 3 D^2 + ..., satisfying L P_n(x) = n * P_(n-1)(x) and R P_n(x) = P_(n+1)(x).
(P.(x) + y)^n = Sum_{k=0..n} binomial(n,k) P_k(x) * y^(n-k) = P_n(x+y).
The Appell polynomial umbral compositional inverse sequence has the e.g.f. e^(t*Q.(x)) = e^[-t / (1-t)] e^(x*t) (see A111884 and A133314), so Q_n(P.(x)) = P_n(Q.(x)) = x^n. The lower triangular matrices for the coefficients of these two Appell sequences are a multiplicative inverse pair.
(End)
Sum_{k=0..n} (-1)^k * T(n,k) = A052845(n). - Alois P. Heinz, Feb 21 2022

A318215 Expansion of e.g.f. exp(x/(1 + x)^2).

Original entry on oeis.org

1, 1, -3, 7, 1, -219, 2581, -22973, 162177, -554039, -10506419, 343049631, -6846400703, 113528248237, -1609627861659, 17371462450651, -36066494745599, -5681921495461743, 243263898097515037, -7398126521141652809, 193119003246643917441, -4476119490014676723659, 89171014860669488040757
Offset: 0

Author

Ilya Gutkovskiy, Aug 21 2018

Keywords

Crossrefs

Programs

  • Maple
    A318215 := proc(n)
        add((-1)^(n-k)*binomial(n+k-1,2*k-1)*n!/k!,k=0..n) ;
    end proc:
    seq(A318215(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[x/(1 + x)^2], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(n - k) Binomial[n + k - 1, 2 k - 1] n!/k!, {k, 0, n}], {n, 0, 22}]
    a[n_] := a[n] = Sum[(-1)^(k + 1) k k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
    Join[{1}, Table[(-1)^(n + 1) n n! HypergeometricPFQ[{1 - n, 1 + n}, {3/2, 2}, 1/4], {n, 22}]]

Formula

E.g.f.: Product_{k>=1} exp((-1)^(k+1)*k*x^k).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1,2*k-1)*n!/k!.
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1)*k*k!*binomial(n-1,k-1)*a(n-k).
D-finite with recurrence a(n) +(3*n-4)*a(n-1) +(n-1)*(3*n-5)*a(n-2) +(n-1)*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Aug 20 2021

A383991 Series expansion of the exponential generating function exp(-tridend(-x)) - 1 where tridend(x) = (1 - 3*x - sqrt(1-6*x+x^2)) / (4*x) (A001003).

Original entry on oeis.org

0, 1, -5, 49, -743, 15421, -407909, 13135165, -498874991, 21838772377, -1082819193029, 59983280191561, -3671752681190615, 246130081055714389, -17932045676505509093, 1410893903131294766101, -119227840965746009631839, 10769985399394862863318705
Offset: 0

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series -tridend(-x) is the inverse for the substitution of the series trias(x), given by the suspension of the Koszul dual of trias. - Bérénice Delcroix-Oger, May 28 2025

Programs

  • Mathematica
    nn = 19; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[(1 + 3*x - Sqrt[1 + 6*x + x^2])/(4*x)], {x, 0, nn}], x]

A383995 Series expansion of the exponential generating function exp(ff6^!(x)) - 1 where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3).

Original entry on oeis.org

0, 1, -11, 61, -215, -1559, 62941, -1371131, 26310481, -474554735, 7824076741, -98881279859, -176260664711, 87457412423161, -5077434546358355, 234510433823788501, -10016559114085864799, 413333665704129673249, -16704968283664639137899, 660340818239784197391325
Offset: 0

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series ff6^!(x) is the inverse for the substitution of the series ff6(x) (given by A231690), given by the suspension of the Koszul dual of FF6. - Bérénice Delcroix-Oger, May 28 2025

Programs

  • Mathematica
    nn = 19; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[x*(1 - 3*x - x^2 + x^3)/(1 + 3*x + x^2 - x^3)], {x, 0, nn}], x]

A088312 Number of sets of lists (cf. A000262) with even number of lists.

Original entry on oeis.org

1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536, 29668681, 413257790, 6238931821, 101415565836, 1765092183037, 32734873484250, 644215775792401, 13404753632014352, 293976795292186897, 6775966692145553526, 163735077313046119861, 4138498600079573989140
Offset: 0

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

From Peter Bala, Mar 27 2022: (Start)
a(2*n) is odd ; a(2*n+1) is even.
If k is odd then k*(k-1) divides a(k). Consequently, 6 divides a(6*n+3), 10 divides a(10*n+5), 14 divides a(14*n+7), and in general, if k is odd then 2*k divides a(2*k*n + k).
For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Cosh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
          b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
    A088312 := n -> ifelse(n=0, 1, (1/2)*(n - 1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4)): seq(simplify(A088312(n)), n = 0..21); # Peter Luschny, Dec 14 2022
  • Mathematica
    With[{m=30}, CoefficientList[Series[Cosh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
    Table[Sum[n!/(2*k)! Binomial[n - 1, 2*k - 1], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Emanuele Munarini, Sep 03 2017 *)
  • SageMath
    def A088312_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( cosh(x/(1-x)) ).egf_to_ogf().list()
    A088312_list(40) # G. C. Greubel, Dec 13 2022

Formula

E.g.f.: cosh(x/(1-x)).
a(n) = Sum_{k=1..floor(n/2)} n!/(2*k)!*binomial(n-1,2*k-1).
a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - Vaclav Kotesovec, Jul 04 2015
a(n+4) - 2*(2*n+5)*a(n+3) + (6*n^2+24*n+23)*a(n+2) - 2*(n+1)*(n+2)*(2*n+3)*a(n+1) + n*(n+1)^2*(n+2)*a(n) = 0. - Emanuele Munarini, Sep 03 2017
a(n) = (1/2)*(A000262(n) + (-1)^n*A111884(n)). - Peter Bala, Mar 27 2022
a(n) = (1/2)*(n-1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4) for n >= 1. - Peter Luschny, Dec 14 2022

Extensions

More terms from Vaclav Kotesovec, Jul 04 2015
a(0)-a(1) prepended by Alois P. Heinz, May 10 2016
Showing 1-10 of 28 results. Next