cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000262 Number of "sets of lists": number of partitions of {1,...,n} into any number of lists, where a list means an ordered subset.

Original entry on oeis.org

1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091, 824073141, 12470162233, 202976401213, 3535017524403, 65573803186921, 1290434218669921, 26846616451246353, 588633468315403843, 13564373693588558173, 327697927886085654441, 8281153039765859726341
Offset: 0

Views

Author

Keywords

Comments

Determinant of n X n matrix M=[m(i,j)] where m(i,i)=i, m(i,j)=1 if i > j, m(i,j)=i-j if j > i. - Vladeta Jovovic, Jan 19 2003
With p(n) = the number of integer partitions of n, d(i) = the number of different parts of the i-th partition of n, m(i,j) = multiplicity of the j-th part of the i-th partition of n, Sum_{i=1..p(n)} = sum over i and Product_{j=1..d(i)} = product over j, one has: a(n) = Sum_{i=1..p(n)} n!/(Product_{j=1..d(i)} m(i,j)!). - Thomas Wieder, May 18 2005
Consider all n! permutations of the integer sequence [n] = 1,2,3,...,n. The i-th permutation, i=1,2,...,n!, consists of Z(i) permutation cycles. Such a cycle has the length lc(i,j), j=1,...,Z(i). For a given permutation we form the product of all its cycle lengths Product_{j=1..Z(i)} lc(i,j). Furthermore, we sum up all such products for all permutations of [n] which gives Sum_{i=1..n!} Product_{j=1..Z(i)} lc(i,j) = A000262(n). For n=4 we have Sum_{i=1..n!} Product_{j=1..Z(i)} lc(i,j) = 1*1*1*1 + 2*1*1 + 3*1 + 2*1*1 + 3*1 + 2*1 + 3*1 + 4 + 3*1 + 4 + 2*2 + 2*1*1 + 3*1 + 4 + 3*1 + 2*1*1 + 2*2 + 4 + 2*2 + 4 + 3*1 + 2*1*1 + 3*1 + 4 = 73 = A000262(4). - Thomas Wieder, Oct 06 2006
For a finite set S of size n, a chain gang G of S is a partially ordered set (S,<=) consisting only of chains. The number of chain gangs of S is a(n). For example, with S={a, b}and n=2, there are a(2)=3 chain gangs of S, namely, {(a,a),(b,b)}, {(a,a),(a,b),(b,b)} and {(a,a),(b,a),(b,b)}. - Dennis P. Walsh, Feb 22 2007
(-1)*A000262 with the first term set to 1 and A084358 form a reciprocal pair under the list partition transform and associated operations described in A133314. Cf. A133289. - Tom Copeland, Oct 21 2007
Consider the distribution of n unlabeled elements "1" onto n levels where empty levels are allowed. In addition, the empty levels are labeled. Their names are 0_1, 0_2, 0_3, etc. This sequence gives the total number of such distributions. If the empty levels are unlabeled ("0"), then the answer is A001700. Let the colon ":" separate two levels. Then, for example, for n=3 we have a(3)=13 arrangements: 111:0_1:0_2, 0_1:111:0_2, 0_1:0_2:111, 111:0_2:0_1, 0_2:111:0_1, 0_2:0_1:111, 11:1:0, 11:0:1, 0:11:1, 1:11:0, 1:0:11, 0:1:11, 1:1:1. - Thomas Wieder, May 25 2008
Row sums of exponential Riordan array [1,x/(1-x)]. - Paul Barry, Jul 24 2008
a(n) is the number of partitions of [n] (A000110) into lists of noncrossing sets. For example, a(3)=3 counts 12, 1-2, 2-1 and a(4) = 73 counts the 75 partitions of [n] into lists of sets (A000670) except for 13-24, 24-13 which fail to be noncrossing. - David Callan, Jul 25 2008
a(i-j)/(i-j)! gives the value of the non-null element (i, j) of the lower triangular matrix exp(S)/exp(1), where S is the lower triangular matrix - of whatever dimension - having all its (non-null) elements equal to one. - Giuliano Cabrele, Aug 11 2008, Sep 07 2008
a(n) is also the number of nilpotent partial one-one bijections (of an n-element set). Equivalently, it is the number of nilpotents in the symmetric inverse semigroup (monoid). - Abdullahi Umar, Sep 14 2008
A000262 is the exp transform of the factorial numbers A000142. - Thomas Wieder, Sep 10 2008
If n is a positive integer then the infinite continued fraction (1+n)/(1+(2+n)/(2+(3+n)/(3+...))) converges to the rational number A052852(n)/A000262(n). - David Angell (angell(AT)maths.unsw.edu.au), Dec 18 2008
Vladeta Jovovic's formula dated Sep 20 2006 can be restated as follows: a(n) is the n-th ascending factorial moment of the Poisson distribution with parameter (mean) 1. - Shai Covo (green355(AT)netvision.net.il), Jan 25 2010
The umbral exponential generating function for a(n) is (1-x)^{-B}. In other words, write (1-x)^{-B} as a power series in x whose coefficients are polynomials in B, and then replace B^k with the Bell number B_k. We obtain a(0) + a(1)x + a(2)x^2/2! + ... . - Richard Stanley, Jun 07 2010
a(n) is the number of Dyck n-paths (A000108) with its peaks labeled 1,2,...,k in some order, where k is the number of peaks. For example a(2)=3 counts U(1)DU(2)D, U(2)DU(1)D, UU(1)DD where the label at each peak is in parentheses. This is easy to prove using generating functions. - David Callan, Aug 23 2011
a(n) = number of permutations of the multiset {1,1,2,2,...,n,n} such that for 1 <= i <= n, all entries between the two i's exceed i and if any such entries are present, they include n. There are (2n-1)!! permutations satisfying the first condition, and for example: a(3)=13 counts all 5!!=15 of them except 331221 and 122133 which fail the second condition. - David Callan, Aug 27 2014
a(n) is the number of acyclic, injective functions from subsets of [n] to [n]. Let subset D of [n] have size k. The number of acyclic, injective functions from D to [n] is (n-1)!/(n-k-1)! and hence a(n) = Sum_{k=0..n-1} binomial(n,k)*(n-1)!/(n-k-1)!. - Dennis P. Walsh, Nov 05 2015
a(n) is the number of acyclic, injective, labeled directed graphs on n vertices with each vertex having outdegree at most one. - Dennis P. Walsh, Nov 05 2015
For n > 0, a(n) is the number of labeled-rooted skinny-tree forests on n nodes. A skinny tree is a tree in which each vertex has at most one child. Let k denote the number of trees. There are binomial(n,k) ways to choose the roots, binomial(n-1,k-1) ways to choose the number of descendants for each root, and (n-k)! ways to permute those descendants. Summing over k, we obtain a(n) = Sum_{k=1..n} C(n,k)*C(n-1,k-1)*(n-k)!. - Dennis P. Walsh, Nov 10 2015
This is the Sheffer transform of the Bell numbers A000110 with the Sheffer matrix S = |Stirling1| = (1, -log(1-x)) = A132393. See the e.g.f. formula, a Feb 21 2017 comment on A048993, and R. Stanley's Jun 07 2010 comment above. - Wolfdieter Lang, Feb 21 2017
All terms = {1, 3} mod 10. - Muniru A Asiru, Oct 01 2017
We conjecture that for k = 2,3,4,..., the difference a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k is periodic with period dividing k. - Peter Bala, Nov 14 2017
The above conjecture is true - see the Bala link. - Peter Bala, Jan 20 2018
The terms of this sequence can be derived from the numerators of the fractions, produced by the recursion: b(0) = 1, b(n) = 1 + ((n-1) * b(n-1)) / (n-1 + b(n-1)) for n > 0. The denominators give A002720. - Dimitris Valianatos, Aug 01 2018
a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 312, and 123. It is also the number of rooted labeled forests that avoid 312, 213, and 132, as well as the number of rooted labeled forests that avoid 132, 213, and 321. - Kassie Archer, Aug 30 2018
For n > 0, a(n) is the number of partitions of [2n-1] whose nontrivial blocks are of type {a,b}, with a <= n and b > n. In fact, for n > 0, a(n) = A056953(2n-1). - Francesca Aicardi, Nov 03 2022
For n > 0, a(n) is the number of ways to split n people into nonempty groups, have each group sit around a circular table, and select one person from each table (where two seating arrangements are considered identical if each person has the same left neighbors in both of them). - Enrique Navarrete, Oct 01 2023

Examples

			Illustration of first terms as sets of ordered lists of the first n integers:
  a(1) = 1  : (1)
  a(2) = 3  : (12), (21), (1)(2).
  a(3) = 13 : (123) (6 ways), (12)(3) (2*3 ways) (1)(2)(3) (1 way)
  a(4) = 73 : (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (2*2*3 ways), (12)(3)(4) (2*6 ways), (1)(2)(3)(4) (1 way).
G.f. = 1 + x + 3*x^2 + 13*x^3 + 73*x^4 + 501*x^4 + 4051*x^5 + 37633*x^6 + 394353*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 194.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A271703 and for n >= 1 of A008297. Unsigned row sums of A111596.
A002868 is maximal element of the n-th row of A271703 and for n >= 1 of A008297.
Main diagonal of A257740 and of A319501.

Programs

  • GAP
    a:=[1,1];; for n in [3..10^2] do a[n]:=(2*n-3)*a[n-1]-(n-2)*(n-3)*a[n-2]; od; A000262:=a;  # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000262 n = a000262_list !! n
    a000262_list = 1 : 1 : zipWith (-)
                   (tail $ zipWith (*) a005408_list a000262_list)
                          (zipWith (*) a002378_list a000262_list)
    -- Reinhard Zumkeller, Mar 06 2014
    
  • Magma
    I:=[1,3]; [1] cat [n le 2 select I[n]  else (2*n-1)*Self(n-1) - (n-1)*(n-2)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 14 2019
    
  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n, -1), -1): n in [0..30]]; // G. C. Greubel, Feb 23 2021
    
  • Maple
    A000262 := proc(n) option remember: if n=0 then RETURN(1) fi: if n=1 then RETURN(1) fi: (2*n-1)*procname(n-1) - (n-1)*(n-2)*procname(n-2) end proc:
    for n from 0 to 20 do printf(`%d,`,a(n)) od:
    spec := [S, {S = Set(Prod(Z,Sequence(Z)))}, labeled]; [seq(combstruct[count](spec, size=n), n=0..40)];
    with(combinat):seq(sum(abs(stirling1(n, k))*bell(k), k=0..n), n=0..18); # Zerinvary Lajos, Nov 26 2006
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=13)},labelled]: seq(combstruct[count](B, size=n), n=0..19);# Zerinvary Lajos, Mar 21 2009
    a := n -> `if`(n=0, 1, n!*hypergeom([1 - n], [2], -1)): seq(simplify(a(n)), n=0..19); # Peter Luschny, Jun 05 2014
  • Mathematica
    Range[0, 19]! CoefficientList[ Series[E^(x/(1-x)), {x, 0, 19}], x] (* Robert G. Wilson v, Apr 04 2005 *)
    a[ n_]:= If[ n<0, 0, n! SeriesCoefficient[ Exp[x/(1-x)], {x, 0, n}]]; (* Michael Somos, Jul 19 2005 *)
    a[n_]:=If[n==0, 1, n! Sum[Binomial[n-1, j]/(j+1)!, {j, 0, n-1}]]; Table[a[n], {n, 0, 30}] (* Wilf *)
    a[0] = 1; a[n_]:= n!*Hypergeometric1F1[n+1, 2, 1]/E; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jun 18 2012, after Shai Covo *)
    Table[Sum[BellY[n, k, Range[n]!], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
    a[ n_]:= If[ n<0, 0, n! SeriesCoefficient[ Product[ QPochhammer[x^k]^(-MoebiusMu[k]/k), {k, n}], {x, 0, n}]]; (* Michael Somos, Jun 02 2019 *)
    Table[n!*LaguerreL[n, -1, -1], {n, 0, 30}] (* G. C. Greubel, Feb 23 2021 *)
    RecurrenceTable[{a[n] == (2*n - 1)*a[n-1] - (n-1)*(n-2)*a[n-2], a[0] == 1, a[1] == 1}, a, {n, 0, 30}] (* Vaclav Kotesovec, Jul 21 2022 *)
  • Maxima
    makelist(sum(abs(stirling1(n,k))*belln(k),k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
    
  • Maxima
    makelist(hypergeometric([-n+1,-n],[],1),n,0,12); /* Emanuele Munarini, Sep 27 2016 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x / (1 - x) + x * O(x^n)), n))}; /* Michael Somos, Feb 10 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, eta(x^k + x * O(x^n))^( -moebius(k) / k)), n))}; /* Michael Somos, Feb 10 2005 */
    
  • PARI
    {a(n) = s = 1; for(k = 1, n-1, s = 1 + k * s / (k + s)); return( numerator(s))}; /* Dimitris Valianatos, Aug 03 2018 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^(-eulerphi(k) / k)), n))}; /* Michael Somos, Jun 02 2019 */
    
  • PARI
    a(n) = if (n==0, 1, (n-1)!*pollaguerre(n-1,1,-1)); \\ Michel Marcus, Feb 23 2021; Jul 13 2024
    
  • Python
    from sympy import hyper, hyperexpand
    def A000262(n): return hyperexpand(hyper((-n+1, -n), [], 1)) # Chai Wah Wu, Jan 14 2022
  • Sage
    A000262 = lambda n: hypergeometric([-n+1, -n], [], 1)
    [simplify(A000262(n)) for n in (0..19)] # Peter Luschny, Apr 08 2015
    

Formula

D-finite with recurrence: a(n) = (2*n-1)*a(n-1) - (n-1)*(n-2)*a(n-2).
E.g.f.: exp( x/(1-x) ).
a(n) = Sum_{k=0..n} |A008275(n,k)| * A000110(k). - Vladeta Jovovic, Feb 01 2003
a(n) = (n-1)!*LaguerreL(n-1,1,-1) for n >= 1. - Vladeta Jovovic, May 10 2003
Representation as n-th moment of a positive function on positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x-1)*BesselI(1, 2*x^(1/2))/x^(1/2) dx, n >= 1. - Karol A. Penson, Dec 04 2003
a(n) = Sum_{k=0..n} A001263(n, k)*k!. - Philippe Deléham, Dec 10 2003
a(n) = n! Sum_{j=0..n-1} binomial(n-1, j)/(j+1)!, for n > 0. - Herbert S. Wilf, Jun 14 2005
Asymptotic expansion for large n: a(n) -> (0.4289*n^(-1/4) + 0.3574*n^(-3/4) - 0.2531*n^(-5/4) + O(n^(-7/4)))*(n^n)*exp(-n + 2*sqrt(n)). - Karol A. Penson, Aug 28 2002
Minor part of this asymptotic expansion is wrong! Right is (in closed form): a(n) ~ n^(n-1/4)*exp(-1/2+2*sqrt(n)-n)/sqrt(2) * (1 - 5/(48*sqrt(n)) - 95/(4608*n)), numerically a(n) ~ (0.42888194248*n^(-1/4) - 0.0446752023417*n^(-3/4) - 0.00884196713*n^(-5/4) + O(n^(-7/4))) *(n^n)*exp(-n+2*sqrt(n)). - Vaclav Kotesovec, Jun 02 2013
a(n) = exp(-1)*Sum_{m>=0} [m]^n/m!, where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial. - Vladeta Jovovic, Sep 20 2006
Recurrence: D(n,k) = D(n-1,k-1) + (n-1+k) * D(n-1,k) n >= k >= 0; D(n,0)=0. From this, D(n,1) = n! and D(n,n)=1; a(n) = Sum_{i=0..n} D(n,i). - Stephen Dalton (StephenMDalton(AT)gmail.com), Jan 05 2007
Proof: Notice two distinct subsets of the lists for [n]: 1) n is in its own list, then there are D(n-1,k-1); 2) n is in a list with other numbers. Denoting the separation of lists by |, it is not hard to see n has (n-1+k) possible positions, so (n-1+k) * D(n-1,k). - Stephen Dalton (StephenMDalton(AT)gmail.com), Jan 05 2007
Define f_1(x), f_2(x), ... such that f_1(x) = exp(x), f_{n+1}(x) = (d/dx)(x^2*f_n(x)), for n >= 2. Then a(n-1) = exp(-1)*f_n(1). - Milan Janjic, May 30 2008
a(n) = (n-1)! * Sum_{k=1..n} (a(n-k)*k!)/((n-k)!*(k-1)!), where a(0)=1. - Thomas Wieder, Sep 10 2008
a(n) = exp(-1)*n!*M(n+1,2,1), n >= 1, where M (=1F1) is the confluent hypergeometric function of the first kind. - Shai Covo (green355(AT)netvision.net.il), Jan 20 2010
a(n) = n!* A067764(n) / A067653(n). - Gary Detlefs, May 15 2010
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A000110, A049118, A049119 and A049120. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, Nov 17 2011, Aug 02 2012, Dec 11 2012, Jan 27 2013, Jul 31 2013, Dec 25 2013: (Start)
Continued fractions:
E.g.f.: Q(0) where Q(k) = 1+x/((1-x)*(2k+1)-x*(1-x)*(2k+1)/(x+(1-x)*(2k+2)/Q(k+1))).
E.g.f.: 1 + x/(G(0)-x) where G(k) = (1-x)*k + 1 - x*(1-x)*(k+1)/G(k+1).
E.g.f.: exp(x/(1-x)) = 4/(2-(x/(1-x))*G(0))-1 where G(k) = 1 - x^2/(x^2 + 4*(1-x)^2*(2*k+1)*(2*k+3)/G(k+1) ).
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + 1/(k+1)/(1-x)/(1-x/(x+1/E(k+1) )).
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - x/(x + (k+1)*(1-x)/E(k+1) )).
E.g.f.: E(0)-1, where E(k) = 2 + x/( (2*k+1)*(1-x) - x/E(k+1) ).
(End)
E.g.f.: Product {n >= 1} ( (1 + x^n)/(1 - x^n) )^( phi(2*n)/(2*n) ), where phi(n) = A000010(n) is the Euler totient function. Cf. A088009. - Peter Bala, Jan 01 2014
a(n) = n!*hypergeom([1-n],[2],-1) for n >= 1. - Peter Luschny, Jun 05 2014
a(n) = (-1)^(n-1)*KummerU(1-n,2,-1). - Peter Luschny, Sep 17 2014
a(n) = hypergeom([-n+1, -n], [], 1) for n >= 0. - Peter Luschny, Apr 08 2015
E.g.f.: Product_{k>0} exp(x^k). - Franklin T. Adams-Watters, May 11 2016
0 = a(n)*(18*a(n+2) - 93*a(n+3) + 77*a(n+4) - 17*a(n+5) + a(n+6)) + a(n+1)*(9*a(n+2) - 80*a(n+3) + 51*a(n+4) - 6*a(n+5)) + a(n+2)*(3*a(n+2) - 34*a(n+3) + 15*a(n+4)) + a(n+3)*(-10*a(n+3)) if n >= 0. - Michael Somos, Feb 27 2017
G.f. G(x)=y satisfies a differential equation: (1-x)*y-2*(1-x)*x^2*y'+x^4*y''=1. - Bradley Klee, Aug 13 2018
a(n) = n! * LaguerreL(n, -1, -1) = c_{n}(n-1; -1) where c_{n}(x; a) are the Poisson - Charlier polynomials. - G. C. Greubel, Feb 23 2021
3 divides a(3*n-1); 9 divides a(9*n-1); 11 divides a(11*n-1). - Peter Bala, Mar 26 2022
For n > 0, a(n) = Sum_{k=0..n-1}*k!*C(n-1,k)*C(n,k). - Francesca Aicardi, Nov 03 2022
For n > 0, a(n) = (n-1)! * (Sum_{i=0..n-1} A002720(i) / i!). - Werner Schulte, Mar 29 2024
a(n+1) = numerator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A002720 for the denominators. - Peter Bala, Feb 11 2025

A088009 Number of "sets of odd lists", cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 25, 181, 1201, 10291, 97777, 1013545, 12202561, 151573951, 2173233481, 31758579997, 524057015665, 8838296029291, 164416415570401, 3145357419120721, 65057767274601217, 1391243470549894135, 31671795881695430521, 747996624368605997701
Offset: 0

Views

Author

Vladeta Jovovic, Nov 02 2003

Keywords

Comments

The Brauer algebra has a basis consisting of all graphs on the vertex set {1,...,2n} whose vertices all have degree 1. The multiplication is defined in Halverson and Ram. a(n) is also the number of idempotent basis elements (i.e., those satisfying b^2=b) of the Brauer algebra. - James East, Dec 27 2013
From Peter Bala, Nov 26 2017: (Start)
The sequence terms have the form 6*m + 1 (follows from the recurrence).
a(n+k) = a(n) (mod k) for all n and k. It follows that the sequence a(n) (mod k) is periodic with the exact period dividing k. For example, modulo 10 the sequence becomes 1, 1, 1, 7, 5, 1, 1, 1, 7, 5, ... with exact period 5. (End)

Examples

			From _R. J. Mathar_, Feb 01 2022 (Start):
Examples of partitions of elements {1,2,..n} into sets of lists where each list contains an odd number of elements:
n=1: One set where the element is the list.
n=2: One set where each of the 2 elements is its own list.
n=3: One set where each of the 3 elements is its own list, plus 6=3! sets of a list of all 3 elements.
n=4: One set where each of the 4 elements is its own list, plus 4*3! sets where one (4 choices) element is its own list and the remaining 3 elements are in another list.
n=5: One set where each of the 5 elements is its own list, plus 5!=120 sets where all 5 elements are in the same list, plus binomial(5,2)*3!=60 sets where two elements are in their own lists and the other 3 in a third list. (End)
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> `if`(n-k mod 2 = 0, binomial((n+k)/2, k), 0):
    a:= n-> n! * add(T(n-1, k-1)/k!, k=0..n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 07 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add((i->
          a(n-i)*binomial(n-1, i-1)*i!)(2*j+1), j=0..(n-1)/2))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 01 2022
  • Mathematica
    a[n_] := SeriesCoefficient[ Exp[x/(1 - x^2) ], {x, 0, n}]*n!; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2015 *)
  • PARI
    x='x+O('x^33);
    Vec(serlaplace(exp(x/(1-x^2))))
    /* Joerg Arndt, Mar 09 2011 */

Formula

E.g.f.: exp(x/(1-x^2)).
a(n) = n!*Sum_{k=1..n} A168561(n-1,k-1)/k!. - Vladimir Kruchinin, Mar 07 2011
E.g.f.: 1 + x/(G(0)-x) where G(k)= (1-x^2)*k + 1+x-x^2 - x*(1-x^2)*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 02 2012
E.g.f.: 1 + x/(1+x)*(G(0) - 1) where G(k) = 1 + 1/(1+x^2)/(k+1)/(1-x/(x+(1)/G(k+1))), (continued fraction). - Sergei N. Gladkovskii, Feb 04 2013
a(n) ~ 2^(-3/4)*n^(n-1/4)*exp(sqrt(2*n)-n) * (1-11/(24*sqrt(2*n))). - Vaclav Kotesovec, Aug 10 2013
D-finite with recurrence a(n) = a(n-1) + 2*(n-2)*(n-1)*a(n-2) + (n-2)*(n-1)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 10 2013
E.g.f.: Product_{n >= 1} (1 + x^n)^(phi(n)/n) = Product_{n >= 0} ( (1 + x^(2*n+1))/(1 - x^(2*n+1)) )^( phi(2*n+1)/(4*n + 2) ), where phi(n) = A000010(n) is the Euler totient function. Cf. A066668 and A000262. - Peter Bala, Jan 01 2014
E.g.f.: Product_{k>0} exp(x^(2*k-1)). - Seiichi Manyama, Oct 10 2017

Extensions

Prepended a(0)=1 by Joerg Arndt, Jul 29 2012

A111884 E.g.f.: exp(x/(1+x)).

Original entry on oeis.org

1, 1, -1, 1, 1, -19, 151, -1091, 7841, -56519, 396271, -2442439, 7701409, 145269541, -4833158329, 104056218421, -2002667085119, 37109187217649, -679877731030049, 12440309297451121, -227773259993414719, 4155839606711748061, -74724654677947488521, 1293162252850914402221
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Row sums of triangle A111596.
With different signs see A066668.
From Peter Bala, Aug 15 2022: (Start)
The congruence a(n+k) == a(n) (mod k) holds for all n and k.
It follows that the sequence obtained by taking a(n) modulo a fixed positive integer k is periodic with period dividing k. For example, taken modulo 10 the sequence becomes [1, 1, 9, 1, 1, 1, 1, 9, 1, 1, ...], a purely periodic sequence with period 5. More generally, the same property holds for any sequence with an e.g.f. of the form F(x)*exp(x*G(x)), where F(x) and G(x) are power series with integer coefficients and G(0) = 1. (End)

Crossrefs

Unsigned row sums of A111596: A000262.

Programs

  • Mathematica
    nn=30; CoefficientList[Series[Exp[x/(1+x)],{x,0,nn}], x] Range[0,nn]! (* Harvey P. Dale, Jul 21 2011 *)
  • Sage
    A111884 = lambda n: hypergeometric([-n+1,-n], [], -1)
    [Integer(A111884(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 23 2014

Formula

E.g.f.: exp(x/(1+x)).
From Sergei N. Gladkovskii, Jul 21 2012: (Start)
Let E(x) be the e.g.f., then
E(x) = 1/G(0) where G(k)= 1 - x/((1+x)*(2*k+1) - x*(1+x)*(2*k+1)/(x - (1+x)*(2*k+2)/G(k+1))); (continued fraction, 3rd kind, 3-step).
E(x) = 1 + x/(G(0)-x) where G(k)= 1 + 2*x + (1+x)*k - x*(1+x)*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step).
E(x) = G(0) where G(k)= 1 + x/((1+x)*(2*k+1) - x*(1+x)*(2*k+1)/(x + 2*(1+x)*(k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step).
(End)
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + 1/(k+1)/(1+x)/(1-x/(x+1/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 27 2013
E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - x/(x + (k+1)*(1+x)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = sum(k=0..n, (-1)^(n-k)*L(n,k)); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = hypergeom([-n+1,-n],[],-1). - Peter Luschny, Apr 08 2015
D-finite with recurrence a(n) +(2*n-3)*a(n-1) +(n-1)*(n-2)*a(n-2)=0. - R. J. Mathar, Jul 20 2017

A066667 Coefficient triangle of generalized Laguerre polynomials (a=1).

Original entry on oeis.org

1, 2, -1, 6, -6, 1, 24, -36, 12, -1, 120, -240, 120, -20, 1, 720, -1800, 1200, -300, 30, -1, 5040, -15120, 12600, -4200, 630, -42, 1, 40320, -141120, 141120, -58800, 11760, -1176, 56, -1, 362880, -1451520, 1693440, -846720, 211680, -28224, 2016
Offset: 0

Views

Author

Christian G. Bower, Dec 17 2001

Keywords

Comments

Same as A008297 (Lah triangle) except for signs.
Row sums give A066668. Unsigned row sums give A000262.
The Laguerre polynomials L(n;x;a=1) under discussion are connected with Hermite-Bell polynomials p(n;x) for power -1 (see also A215216) defined by the following relation: p(n;x) := x^(2n)*exp(x^(-1))*(d^n exp(-x^(-1))/dx^n). We have L(n;x;a=1)=(-x)^(n-1)*p(n;1/x), p(n+1;x)=x^2(dp(n;x)/dx)+(1-2*n*x)p(n;x), and p(1;x)=1, p(2;x)=1-2*x, p(3;x)=1-6*x+6*x^2, p(4;x)=1-12*x+36*x^2-24*x^3, p(5;x)=1-20*x+120*x^2-240*x^3+120*x^4. Note that if we set w(n;x):=x^(2n)*p(n;1/x) then w(n+1;x)=(w(n;x)-(dw(n;x)/dx))*x^2, which is almost analogous to the recurrence formula for Bell polynomials B(n+1;x)=(B(n;x)+(dB(n;x)/dx))*x. - Roman Witula, Aug 06 2012.

Examples

			Triangle a(n,m) begins
n\m     0        1       2       3      4      5    6   7  8
0:      1
1:      2       -1
2:      6       -6       1
3:     24      -36      12      -1
4:    120     -240     120     -20      1
5:    720    -1800    1200    -300     30     -1
6:   5040   -15120   12600   -4200    630    -42    1
7:  40320  -141120  141120  -58800  11760  -1176   56  -1
8: 362880 -1451520 1693440 -846720 211680 -28224 2016 -72  1
9: 3628800, -16329600, 21772800, -12700800, 3810240, -635040, 60480, -3240, 90, -1.
Reformatted and extended by _Wolfdieter Lang_, Jan 31 2013.
From _Wolfdieter Lang_, Jan 31 2013 (Start)
Recurrence (standard): a(4,2) = 2*4*12 - (-36) - 4*3*1 = 120.
Recurrence (simple): a(4,2) = 7*12 - (-36) = 120. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 778 (22.5.17).
  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 95 (4.1.62)
  • R. Witula, E. Hetmaniok, and D. Slota, The Hermite-Bell polynomials for negative powers, (submitted, 2012)

Crossrefs

Programs

  • Maple
    A066667 := (n, k) -> (-1)^k*binomial(n, k)*(n + 1)!/(k + 1)!:
    for n from 0 to 9 do seq(A066667(n,k), k = 0..n) od; # Peter Luschny, Jun 22 2022
  • Mathematica
    Table[(-1)^m*Binomial[n, m]*(n + 1)!/(m + 1)!, {n, 0, 8}, {m, 0, n}] // Flatten (* Michael De Vlieger, Sep 04 2019 *)
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, 1)); \\ Michel Marcus, Feb 06 2021

Formula

E.g.f. (relative to x, keep y fixed): A(x)=(1/(1-x))^2*exp(x*y/(x-1)).
From Wolfdieter Lang, Jan 31 2013: (Start)
a(n,m) = (-1)^m*binomial(n,m)*(n+1)!/(m+1)!, n >= m >= 0. [corrected by Georg Fischer, Oct 26 2022]
Recurrence from standard three term recurrence for orthogonal generalized Laguerre polynomials {P(n,x):=n!*L(1,n,x)}:
P(n,x) = (2*n-x)*P(n-1,x) - n*(n-1)*P(n-2), n>=1, P(-1,x) = 0, P(0,x) = 1.
a(n,m) = 2*n*a(n-1,m) - a(n-1,m-1) - n*(n-1)*a(n-2,m), n>=1, a(0,0) =1, a(n,-1) = 0, a(n,m) = 0 if n < m.
Simplified recurrence from explicit form of a(n,m):
a(n,m) = (n+m+1)*a(n-1,m) - a(n-1,m-1), n >= 1, a(0,0) =1, a(n,-1) = 0, a(n,m) = 0 if n < m.
(End)

A293116 Expansion of e.g.f. exp(x/(x-1)).

Original entry on oeis.org

1, -1, -1, -1, 1, 19, 151, 1091, 7841, 56519, 396271, 2442439, 7701409, -145269541, -4833158329, -104056218421, -2002667085119, -37109187217649, -679877731030049, -12440309297451121, -227773259993414719, -4155839606711748061, -74724654677947488521
Offset: 0

Views

Author

Seiichi Manyama, Sep 30 2017

Keywords

Crossrefs

Column k=0 of A293119.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(
          a(n-j)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 30 2017
  • Mathematica
    CoefficientList[Series[E^(-x/(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2017 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(x/(x-1))))

Formula

E.g.f.: exp(x/(x-1)).
a(n) = (-1)^n * A111884(n).
E.g.f.: Product_{k>=1} (1 - x^k)^(phi(k)/k), where phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, May 25 2019
D-finite with recurrence a(n) +(-2*n+3)*a(n-1) +(n-1)*(n-2)*a(n-2)=0. - R. J. Mathar, Mar 13 2023

A173227 Partial sums of A000262.

Original entry on oeis.org

1, 2, 5, 18, 91, 592, 4643, 42276, 436629, 5033182, 63974273, 888047414, 13358209647, 216334610860, 3751352135263, 69325155322184, 1359759373992105, 28206375825238458, 616839844140642301, 14181213537729200474, 341879141423814854915, 8623032181189674581256
Offset: 0

Views

Author

Jonathan Vos Post, Feb 13 2010

Keywords

Comments

Partial sums of the number of "sets of lists": number of partitions of {1,..,n} into any number of lists, where a list means an ordered subset. The subsequence of primes begins: 2, 5, 4643, 616839844140642301.

Examples

			a(20) = 1 + 1 + 3 + 13 + 73 + 501 + 4051 + 37633 + 394353 + 4596553 + 58941091 + 824073141 + 12470162233 + 202976401213 + 3535017524403 + 65573803186921 + 1290434218669921 + 26846616451246353 + 588633468315403843 + 13564373693588558173 + 327697927886085654441.
		

Crossrefs

Programs

  • Magma
    l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
    [n eq 0 select 1 else 1 + (&+[ Factorial(j)*( l(j,-1) - l(j-1,-1) ): j in [1..n]]): n in [0..25]]; // G. C. Greubel, Mar 09 2021
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
           b(n-j)*j!*binomial(n-1, j-1), j=1..n))
        end:
    a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 11 2016
  • Mathematica
    With[{m = 25}, CoefficientList[Exp[x/(1-x)] + O[x]^m, x] Range[0, m-1]!// Accumulate] (* Jean-François Alcover, Nov 21 2020 *)
    Table[1 +Sum[j!*(LaguerreL[j, -1] -LaguerreL[j-1, -1]), {j,n}], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    [1 + sum(factorial(j)*(gen_laguerre(j,0,-1) - gen_laguerre(j-1,0,-1)) for j in (1..n)) for n in (0..30)] # G. C. Greubel, Mar 09 2021
    

Formula

From Vaclav Kotesovec, Oct 25 2016: (Start)
a(n) = 2*n*a(n-1) - (n^2 - n + 1)*a(n-2) + (n-2)*(n-1)*a(n-3).
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/sqrt(2) * (1 - 5/(48*sqrt(n))).
(End)
a(n) = 1 + Sum_{j=1..n} j!*( LaguerreL(j,-1) - LaguerreL(j-1,-1) ). - G. C. Greubel, Mar 09 2021

A094094 Define x[1]...x[n] by the equations Sum_{j=1..n} x[j]^i = i, i=1..n; a(n) = n! * Sum_{j=1..n} x[j]^(n+1).

Original entry on oeis.org

1, 5, 25, 139, 871, 6131, 48161, 419399, 4025071, 42359239, 486703009, 6081751259, 82345132871, 1203618149579, 18920122802881, 318578240878351, 5722495974697951, 109204791111380879, 2205128748183225281
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2004

Keywords

Comments

Suggested by Example 2.24 in Lozansky and Rousseau. Hint: use Newton's equations.

References

  • E. Lozansky and C. Rousseau, Winning Solutions, Springer, 1996; see p. 103.

Crossrefs

Cf. A066668.

Programs

  • Mathematica
    Table[Sum[(-1)^(k+1)*n!/k!*Binomial[n+1, k+1], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Nov 13 2017 *)

Formula

E.g.f.: (1-exp(x/(x-1)))/(1-x)^2. - Vladeta Jovovic, May 03 2004
a(n) = n!*(n+1-LaguerreL(n,1,1)) = Sum_{k=1..n} (-1)^(k+1)*n!/k!*binomial(n+1,k+1). - Vladeta Jovovic, Apr 27 2006
a(n) = (3*n - 1)*a(n-1) - n*(3*n - 4)*a(n-2) + (n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, Nov 13 2017

Extensions

More terms from Vladeta Jovovic, May 03 2004
Showing 1-7 of 7 results.