cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 260 results. Next

A088009 Number of "sets of odd lists", cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 25, 181, 1201, 10291, 97777, 1013545, 12202561, 151573951, 2173233481, 31758579997, 524057015665, 8838296029291, 164416415570401, 3145357419120721, 65057767274601217, 1391243470549894135, 31671795881695430521, 747996624368605997701
Offset: 0

Views

Author

Vladeta Jovovic, Nov 02 2003

Keywords

Comments

The Brauer algebra has a basis consisting of all graphs on the vertex set {1,...,2n} whose vertices all have degree 1. The multiplication is defined in Halverson and Ram. a(n) is also the number of idempotent basis elements (i.e., those satisfying b^2=b) of the Brauer algebra. - James East, Dec 27 2013
From Peter Bala, Nov 26 2017: (Start)
The sequence terms have the form 6*m + 1 (follows from the recurrence).
a(n+k) = a(n) (mod k) for all n and k. It follows that the sequence a(n) (mod k) is periodic with the exact period dividing k. For example, modulo 10 the sequence becomes 1, 1, 1, 7, 5, 1, 1, 1, 7, 5, ... with exact period 5. (End)

Examples

			From _R. J. Mathar_, Feb 01 2022 (Start):
Examples of partitions of elements {1,2,..n} into sets of lists where each list contains an odd number of elements:
n=1: One set where the element is the list.
n=2: One set where each of the 2 elements is its own list.
n=3: One set where each of the 3 elements is its own list, plus 6=3! sets of a list of all 3 elements.
n=4: One set where each of the 4 elements is its own list, plus 4*3! sets where one (4 choices) element is its own list and the remaining 3 elements are in another list.
n=5: One set where each of the 5 elements is its own list, plus 5!=120 sets where all 5 elements are in the same list, plus binomial(5,2)*3!=60 sets where two elements are in their own lists and the other 3 in a third list. (End)
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> `if`(n-k mod 2 = 0, binomial((n+k)/2, k), 0):
    a:= n-> n! * add(T(n-1, k-1)/k!, k=0..n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 07 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add((i->
          a(n-i)*binomial(n-1, i-1)*i!)(2*j+1), j=0..(n-1)/2))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 01 2022
  • Mathematica
    a[n_] := SeriesCoefficient[ Exp[x/(1 - x^2) ], {x, 0, n}]*n!; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2015 *)
  • PARI
    x='x+O('x^33);
    Vec(serlaplace(exp(x/(1-x^2))))
    /* Joerg Arndt, Mar 09 2011 */

Formula

E.g.f.: exp(x/(1-x^2)).
a(n) = n!*Sum_{k=1..n} A168561(n-1,k-1)/k!. - Vladimir Kruchinin, Mar 07 2011
E.g.f.: 1 + x/(G(0)-x) where G(k)= (1-x^2)*k + 1+x-x^2 - x*(1-x^2)*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 02 2012
E.g.f.: 1 + x/(1+x)*(G(0) - 1) where G(k) = 1 + 1/(1+x^2)/(k+1)/(1-x/(x+(1)/G(k+1))), (continued fraction). - Sergei N. Gladkovskii, Feb 04 2013
a(n) ~ 2^(-3/4)*n^(n-1/4)*exp(sqrt(2*n)-n) * (1-11/(24*sqrt(2*n))). - Vaclav Kotesovec, Aug 10 2013
D-finite with recurrence a(n) = a(n-1) + 2*(n-2)*(n-1)*a(n-2) + (n-2)*(n-1)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 10 2013
E.g.f.: Product_{n >= 1} (1 + x^n)^(phi(n)/n) = Product_{n >= 0} ( (1 + x^(2*n+1))/(1 - x^(2*n+1)) )^( phi(2*n+1)/(4*n + 2) ), where phi(n) = A000010(n) is the Euler totient function. Cf. A066668 and A000262. - Peter Bala, Jan 01 2014
E.g.f.: Product_{k>0} exp(x^(2*k-1)). - Seiichi Manyama, Oct 10 2017

Extensions

Prepended a(0)=1 by Joerg Arndt, Jul 29 2012

A088311 Number of sets of lists with distinct list sizes, cf. A000262.

Original entry on oeis.org

1, 1, 2, 12, 48, 360, 2880, 25200, 241920, 2903040, 36288000, 479001600, 7185024000, 112086374400, 1917922406400, 35307207936000, 669529276416000, 13516122267648000, 294509190463488000, 6568835422076928000, 155705728523304960000, 3882911605049917440000
Offset: 0

Views

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

a(n) also enumerates ordered pairs of permutation functions on n elements where f(g(x)) = g(g(f(x))). - Chad Brewbaker, Mar 27 2014

Crossrefs

Other ordered permutation function pair relations are A000012, A000085, A000142, A001044, A053529.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( (&*[1+x^j: j in [1..m+2]]) ))); // G. C. Greubel, Dec 14 2022
    
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> n!*b(n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 15 2018
  • Mathematica
    nn = 19; Drop[ Range[0, nn]! CoefficientList[ Series[ Product[1 + x^i, {i,nn}], {x,0,nn}], x], 0] (* Geoffrey Critzer, Aug 05 2013; adapted to new offset by Vincenzo Librandi, Mar 28 2014 *)
    nmax = 20; CoefficientList[Series[Product[1/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(eta(x^2)/eta(x))) \\ Joerg Arndt, Aug 06 2013
    
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(0, 1) #  Peter Luschny's code of A000009 and A166861
    b = EulerTransform(a)
    [factorial(n)*b(n) for n in range(41)] # G. C. Greubel, Dec 14 2022

Formula

E.g.f: Product_{m>0} (1+x^m).
a(n) = n! * A000009(n).

Extensions

Prepended a(0) = 1, Joerg Arndt, Aug 06 2013

A113235 Number of partitions of {1,..,n} into any number of lists of size not equal to 2, where a list means an ordered subset, cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 49, 301, 2281, 21211, 220417, 2528569, 32014801, 442974511, 6638604721, 107089487077, 1849731389689, 34051409587651, 665366551059841, 13751213558077681, 299644435399909537, 6864906328749052759, 164941239260973870001, 4146673091958686331421
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2005

Keywords

Crossrefs

This sequence, A113236 and A113237 all describe the same type of mathematical structure: lists with some restrictions.

Programs

  • Magma
    I:=[1, 1, 7, 49]; [1] cat [n le 4 select I[n] else (2*n-1)*Self(n -1) - (n-1)*n*Self(n-2) +4*(n-1)*(n-2)*Self(n-3) -2*(n-1)*(n-2)*(n-3)* Self(n-4): n in [1..30]]; // G. C. Greubel, May 16 2018
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*j!, j=[1, $3..n]))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
  • Mathematica
    f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 2*k, -1, -1]/k!, {k, 0, Floor[n/2]}]; Table[ f[n], {n, 0, 19}]
    Range[0, 19]!*CoefficientList[ Series[ Exp[x*(1 - x + x^2)/(1 - x)], {x, 0, 19}], x] (* Robert G. Wilson v, Oct 21 2005 *)
  • PARI
    m=30; v=concat([1,1,7,49], vector(m-4)); for(n=5, m, v[n]=(2*n-1)*v[n-1]-(n-1)*n*v[n-2]+4*(n-1)*(n-2)*v[n-3]-2*(n-1)*(n-2)*(n-3)*v[n -4]); concat([1], v) \\ G. C. Greubel, May 16 2018
    
  • PARI
    x='x+O('x^99); Vec(serlaplace(exp(x*(1-x+x^2)/(1-x)))) \\ Altug Alkan, May 17 2018
    

Formula

Expression as a sum involving generalized Laguerre polynomials, in Mathematica notation: a(n)=n!*Sum[(-1)^k*LaguerreL[n - 2*k, -1, -1]/k!, {k, 0, Floor[n/2]}], n=0, 1... .
E.g.f.: exp(x*(1-x+x^2)/(1-x)).
From Vaclav Kotesovec, Nov 13 2017: (Start)
a(n) = (2*n - 1)*a(n-1) - (n-1)*n*a(n-2) + 4*(n-2)*(n-1)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ exp(-3/2 + 2*sqrt(n) - n) * n^(n-1/4) / sqrt(2) * (1 + 91/(48*sqrt(n))).
(End)

A111752 Number of partitions of {1,..,n} into lists with an even number of lists of size 1, where a list means an ordered subset (cf. A000262).

Original entry on oeis.org

1, 0, 3, 6, 49, 300, 2491, 22890, 239457, 2782584, 35595091, 496577070, 7499663953, 121855323876, 2118793593099, 39245026343250, 771255810671041, 16025261292247920, 350956070419872547, 8078570913162379734, 194969375055353840241, 4922311437793379501340
Offset: 0

Views

Author

Vladeta Jovovic, Nov 19 2005; corrected Jun 06 2006

Keywords

Comments

a(n) + A111753(n) = A000262(n). - David Wasserman, Feb 11 2009

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j,
         `if`(j=1, 1-t, t))*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, t, Sum[b[n-j, If[j == 1, 1-t, t]] * Binomial[n-1, j-1]*j!, {j, 1, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 21 2017, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial, factorial as f
    @cacheit
    def b(n, t): return t if n==0 else sum(b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1)*f(j) for j in range(1, n + 1))
    def a(n): return b(n, 1)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Aug 10 2017

Formula

E.g.f.: cosh(x)*exp(x^2/(1-x)). More generally, e.g.f. for number of partitions of {1, 2, ...n} into lists with an even number of lists of size k is cosh(x^k)*exp(x/(1-x)-x^k).
E.g.f.: cosh(x)*exp(x^2/(1-x)) = 1/2*Q(0); Q(k) = 1+((2*x-1)^k)/(1-x/(x+((2*x-1)^k)*(k+1)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2011
a(n) ~ (exp(1)+exp(-1)) * 2^(-3/2) * exp(2*sqrt(n)-n-3/2) * n^(n-1/4) * (1 + (2/(1 + exp(2)) - 5/48)/sqrt(n)). - Vaclav Kotesovec, Jan 21 2017, extended Dec 01 2021

Extensions

More terms from David Wasserman, Feb 11 2009
a(0)=1 prepended by Alois P. Heinz, May 10 2016

A111753 Number of partitions of {1,..,n} into lists with an odd number of lists of size 1, where a list means an ordered subset, cf. A000262.

Original entry on oeis.org

0, 1, 0, 7, 24, 201, 1560, 14743, 154896, 1813969, 23346000, 327496071, 4970498280, 81121077337, 1416223931304, 26328776843671, 519178407998880, 10821355158998433, 237677397895531296, 5485802780426178439, 132728552830731814200, 3358841601972480225001
Offset: 0

Views

Author

Vladeta Jovovic, Nov 19 2005; corrected Jun 06 2006

Keywords

Comments

a(n) + A111752(n) = A000262(n). - David Wasserman, Feb 11 2009

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j,
         `if`(j=1, 1-t, t))*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
  • Mathematica
    b[n_, t_] := b[n, t] = If[n==0, t, Sum[b[n-j, If[j==1, 1-t, t]]*Binomial[ n-1, j-1]*j!, {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial, factorial as f
    @cacheit
    def b(n, t): return t if n==0 else sum([b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1)*f(j) for j in range(1, n + 1)])
    def a(n): return b(n, 0)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Aug 10 2017

Formula

E.g.f.: sinh(x)*exp(x^2/(1-x)). More generally, e.g.f. for number of partitions of {1, 2, ...n} into lists with an odd number of lists of size k is sinh(x^k)*exp(x/(1-x)-x^k).
E.g.f.: sinh(x)*exp(x^2/(1-x))=1/2*Q(0); Q(k)=1-((2x-1)^k)/( 1-x/(x-((2x-1)^k)*(k+1)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2011
a(n) ~ (exp(1)-exp(-1)) * 2^(-3/2) * exp(2*sqrt(n)-n-3/2) * n^(n-1/4) * (1 + (43/48 - coth(1))/sqrt(n)). - Vaclav Kotesovec, Dec 01 2021

Extensions

More terms from David Wasserman, Feb 11 2009
a(0)=0 prepended by Alois P. Heinz, May 10 2016

A132959 Total number of all distinct list sizes in all partitions of [n] into lists, cf. A000262.

Original entry on oeis.org

1, 3, 19, 109, 881, 7621, 77785, 854225, 10750465, 143737381, 2121714761, 33426065905, 568250246305, 10242445089605, 197388381934801, 4003553262384961, 86010508861504385, 1939950117886565125
Offset: 1

Views

Author

Vladeta Jovovic, Sep 06 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[ Range[0, 20]! CoefficientList[ Series[ Exp[x/(1 - x)] Sum[(-x)^k/(k!*(x^k - 1)), {k, 25}], {x, 0, 20}], x]] (* Robert G. Wilson v, Sep 13 2007 *)

Formula

E.g.f.: exp(x/(1-x))*Sum_{k>0}(1-exp(-x^k)).

Extensions

More terms from Robert G. Wilson v, Sep 13 2007

A088026 Number of "sets of even lists" for even n, cf. A000262.

Original entry on oeis.org

1, 2, 36, 1560, 122640, 15150240, 2695049280, 650948538240, 204637027795200, 81098021561356800, 39516616693678924800, 23204736106751520921600, 16152539421202464036556800, 13145716394493318293898240000, 12363004898960780220305909760000
Offset: 0

Views

Author

Vladeta Jovovic, Nov 02 2003

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add((i->
          b(n-i)*binomial(n-1, i-1)*i!)(2*j), j=1..n/2))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 01 2022
  • Mathematica
    Table[n!*SeriesCoefficient[E^(x^2/(1-x^2)),{x,0,n}],{n,0,40,2}] (* Vaclav Kotesovec, Feb 25 2014 *)
  • PARI
    x='x+O('x^66); /* (half) that many terms */
    v=Vec(serlaplace(exp(x^2/(1-x^2))));
    vector(#v\2,n, v[2*n-1])
    /* Joerg Arndt, Jul 29 2012 */

Formula

E.g.f.: exp(x^2/(1-x^2)) (even powers only, see PARI code).
E.g.f.: exp(x^2/(1-x^2)) = 4/(2-(x^2/(1-x^2))*G(0))-1 where G(k) = 1 - x^4/(x^4 + 4*(1-x^2)^2*(2*k+1)*(2*k+3)/G(k+1) ) (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
a(n) ~ 2^(2*n) * n^(2*n-1/4) * exp(sqrt(4*n)-2*n-1/2). - Vaclav Kotesovec, Feb 25 2014
D-finite with recurrence a(n) -2*(2*n-1)^2*a(n-1) +4*(n-1)*(n-2)*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 01 2022
a(n) = A206703(2n,n). - Alois P. Heinz, Feb 19 2022

Extensions

More terms from Joerg Arndt, Jul 29 2012.

A088312 Number of sets of lists (cf. A000262) with even number of lists.

Original entry on oeis.org

1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536, 29668681, 413257790, 6238931821, 101415565836, 1765092183037, 32734873484250, 644215775792401, 13404753632014352, 293976795292186897, 6775966692145553526, 163735077313046119861, 4138498600079573989140
Offset: 0

Views

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

From Peter Bala, Mar 27 2022: (Start)
a(2*n) is odd ; a(2*n+1) is even.
If k is odd then k*(k-1) divides a(k). Consequently, 6 divides a(6*n+3), 10 divides a(10*n+5), 14 divides a(14*n+7), and in general, if k is odd then 2*k divides a(2*k*n + k).
For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Cosh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
          b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
    A088312 := n -> ifelse(n=0, 1, (1/2)*(n - 1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4)): seq(simplify(A088312(n)), n = 0..21); # Peter Luschny, Dec 14 2022
  • Mathematica
    With[{m=30}, CoefficientList[Series[Cosh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
    Table[Sum[n!/(2*k)! Binomial[n - 1, 2*k - 1], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Emanuele Munarini, Sep 03 2017 *)
  • SageMath
    def A088312_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( cosh(x/(1-x)) ).egf_to_ogf().list()
    A088312_list(40) # G. C. Greubel, Dec 13 2022

Formula

E.g.f.: cosh(x/(1-x)).
a(n) = Sum_{k=1..floor(n/2)} n!/(2*k)!*binomial(n-1,2*k-1).
a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - Vaclav Kotesovec, Jul 04 2015
a(n+4) - 2*(2*n+5)*a(n+3) + (6*n^2+24*n+23)*a(n+2) - 2*(n+1)*(n+2)*(2*n+3)*a(n+1) + n*(n+1)^2*(n+2)*a(n) = 0. - Emanuele Munarini, Sep 03 2017
a(n) = (1/2)*(A000262(n) + (-1)^n*A111884(n)). - Peter Bala, Mar 27 2022
a(n) = (1/2)*(n-1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4) for n >= 1. - Peter Luschny, Dec 14 2022

Extensions

More terms from Vaclav Kotesovec, Jul 04 2015
a(0)-a(1) prepended by Alois P. Heinz, May 10 2016

A088313 Number of "sets of lists" (cf. A000262) with an odd number of lists.

Original entry on oeis.org

0, 1, 2, 7, 36, 241, 1950, 18271, 193256, 2270017, 29272410, 410815351, 6231230412, 101560835377, 1769925341366, 32838929702671, 646218442877520, 13441862819232001, 294656673023216946, 6788407001443004647, 163962850573039534580, 4142654439686285737201
Offset: 0

Views

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

From Peter Bala, Mar 27 2022: (Start)
a(2*n) is even; in fact, 2*n*(2*n-1)*(2n-2) divides a(2*n). a(2*n+1) is odd.
For a positive integer k, a(n+2*k) - a(n) is divisible by k. Thus the sequence obtained by taking a(n) modulo k is purely periodic with period 2*k. Calculation suggests that when k is even the exact period equals k, and when k is odd the exact period equals 2*k. (End)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); [0] cat Coefficients(R!(Laplace( Sinh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
          b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
    A088313 := n -> ifelse(n=0, 0, n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4)): seq(simplify(A088313(n)), n = 0..21); # Peter Luschny, Dec 14 2022
  • Mathematica
    With[{m=30}, CoefficientList[Series[Sinh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
  • PARI
    my(x='x+O('x^66)); concat(0, Vec(serlaplace(sinh(x/(1-x))))) \\ Joerg Arndt, Jul 16 2013
    
  • SageMath
    def A088313_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( sinh(x/(1-x)) ).egf_to_ogf().list()
    A088313_list(40) # G. C. Greubel, Dec 13 2022

Formula

E.g.f.: sinh(x/(1-x)).
a(n) = Sum_{k=1..floor((n+1)/2)} n!/(2*k-1)!*binomial(n-1, 2*k-2).
E.g.f.: sinh(x/(1-x)) = x/(2-2*x)*E(0), where E(k)= 1 + 1/( 1 - x^2/(x^2 + 2*(1-x)^2*(k+1)*(2*k+3)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
a(n) ~ 2^(-3/2) * n^(n-1/4) * exp(2*sqrt(n)-n-1/2). - Vaclav Kotesovec, Jul 04 2015
a(n) = (1/2)*(A000262(n) - (-1)^n*A111884(n)). - Peter Bala, Mar 27 2022
a(n) = n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4) for n >= 1. - Peter Luschny, Dec 14 2022

Extensions

a(0)=0 prepended by Alois P. Heinz, May 10 2016

A097145 Total sum of minimum list sizes in all sets of lists of n-set, cf. A000262.

Original entry on oeis.org

0, 1, 5, 25, 157, 1101, 9211, 85513, 900033, 10402633, 133059331, 1836961941, 27619253113, 444584808253, 7678546353843, 140944884572521, 2751833492404321, 56691826303303953, 1233793951629951043, 28191548364561422173, 676190806704598883241
Offset: 0

Views

Author

Vladeta Jovovic, Jul 27 2004

Keywords

Examples

			For n=4 we have 73 sets of lists (cf. A000262): (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (3*4 ways), (12)(3)(4) (6*2 ways), (1)(2)(3)(4) (1 way); so a(n)= 24*4+24*1+12*2+12*1+1*1 = 157.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, m, add(j!*
          b(n-j, min(m, j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> `if`(n=0, 0, b(n, infinity)):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    b[n_, m_] := b[n, m] = If[n==0, m, Sum[j!*b[n-j, Min[m, j]]*Binomial[n-1, j - 1], {j, 1, n}]]; a[n_] := If[n==0, 0, b[n, Infinity]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 18 2017, after Alois P. Heinz *)

Formula

E.g.f.: Sum_{k>0} (exp(x^k/(1-x))-1).

Extensions

More terms from Max Alekseyev, Jul 04 2009
a(0)=0 prepended by Alois P. Heinz, May 10 2016
Showing 1-10 of 260 results. Next