A088009
Number of "sets of odd lists", cf. A000262.
Original entry on oeis.org
1, 1, 1, 7, 25, 181, 1201, 10291, 97777, 1013545, 12202561, 151573951, 2173233481, 31758579997, 524057015665, 8838296029291, 164416415570401, 3145357419120721, 65057767274601217, 1391243470549894135, 31671795881695430521, 747996624368605997701
Offset: 0
From _R. J. Mathar_, Feb 01 2022 (Start):
Examples of partitions of elements {1,2,..n} into sets of lists where each list contains an odd number of elements:
n=1: One set where the element is the list.
n=2: One set where each of the 2 elements is its own list.
n=3: One set where each of the 3 elements is its own list, plus 6=3! sets of a list of all 3 elements.
n=4: One set where each of the 4 elements is its own list, plus 4*3! sets where one (4 choices) element is its own list and the remaining 3 elements are in another list.
n=5: One set where each of the 5 elements is its own list, plus 5!=120 sets where all 5 elements are in the same list, plus binomial(5,2)*3!=60 sets where two elements are in their own lists and the other 3 in a third list. (End)
- Seiichi Manyama, Table of n, a(n) for n = 0..446 (terms 0..200 from Alois P. Heinz)
- I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014.
- T. Halverson and A. Ram, Partition algebras, arXiv:math/0401314 [math.RT], 2004.
- T. Halverson and A. Ram, Partition algebras, European J. Combin. 26 (6) (2005) 869-921.
-
T:= (n, k)-> `if`(n-k mod 2 = 0, binomial((n+k)/2, k), 0):
a:= n-> n! * add(T(n-1, k-1)/k!, k=0..n):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 07 2011
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add((i->
a(n-i)*binomial(n-1, i-1)*i!)(2*j+1), j=0..(n-1)/2))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Feb 01 2022
-
a[n_] := SeriesCoefficient[ Exp[x/(1 - x^2) ], {x, 0, n}]*n!; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2015 *)
-
x='x+O('x^33);
Vec(serlaplace(exp(x/(1-x^2))))
/* Joerg Arndt, Mar 09 2011 */
A088311
Number of sets of lists with distinct list sizes, cf. A000262.
Original entry on oeis.org
1, 1, 2, 12, 48, 360, 2880, 25200, 241920, 2903040, 36288000, 479001600, 7185024000, 112086374400, 1917922406400, 35307207936000, 669529276416000, 13516122267648000, 294509190463488000, 6568835422076928000, 155705728523304960000, 3882911605049917440000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( (&*[1+x^j: j in [1..m+2]]) ))); // G. C. Greubel, Dec 14 2022
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> n!*b(n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
-
nn = 19; Drop[ Range[0, nn]! CoefficientList[ Series[ Product[1 + x^i, {i,nn}], {x,0,nn}], x], 0] (* Geoffrey Critzer, Aug 05 2013; adapted to new offset by Vincenzo Librandi, Mar 28 2014 *)
nmax = 20; CoefficientList[Series[Product[1/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 19 2015 *)
-
my(x='x+O('x^66)); Vec(serlaplace(eta(x^2)/eta(x))) \\ Joerg Arndt, Aug 06 2013
-
# uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(0, 1) # Peter Luschny's code of A000009 and A166861
b = EulerTransform(a)
[factorial(n)*b(n) for n in range(41)] # G. C. Greubel, Dec 14 2022
A113235
Number of partitions of {1,..,n} into any number of lists of size not equal to 2, where a list means an ordered subset, cf. A000262.
Original entry on oeis.org
1, 1, 1, 7, 49, 301, 2281, 21211, 220417, 2528569, 32014801, 442974511, 6638604721, 107089487077, 1849731389689, 34051409587651, 665366551059841, 13751213558077681, 299644435399909537, 6864906328749052759, 164941239260973870001, 4146673091958686331421
Offset: 0
This sequence,
A113236 and
A113237 all describe the same type of mathematical structure: lists with some restrictions.
-
I:=[1, 1, 7, 49]; [1] cat [n le 4 select I[n] else (2*n-1)*Self(n -1) - (n-1)*n*Self(n-2) +4*(n-1)*(n-2)*Self(n-3) -2*(n-1)*(n-2)*(n-3)* Self(n-4): n in [1..30]]; // G. C. Greubel, May 16 2018
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*j!, j=[1, $3..n]))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
-
f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 2*k, -1, -1]/k!, {k, 0, Floor[n/2]}]; Table[ f[n], {n, 0, 19}]
Range[0, 19]!*CoefficientList[ Series[ Exp[x*(1 - x + x^2)/(1 - x)], {x, 0, 19}], x] (* Robert G. Wilson v, Oct 21 2005 *)
-
m=30; v=concat([1,1,7,49], vector(m-4)); for(n=5, m, v[n]=(2*n-1)*v[n-1]-(n-1)*n*v[n-2]+4*(n-1)*(n-2)*v[n-3]-2*(n-1)*(n-2)*(n-3)*v[n -4]); concat([1], v) \\ G. C. Greubel, May 16 2018
-
x='x+O('x^99); Vec(serlaplace(exp(x*(1-x+x^2)/(1-x)))) \\ Altug Alkan, May 17 2018
A111752
Number of partitions of {1,..,n} into lists with an even number of lists of size 1, where a list means an ordered subset (cf. A000262).
Original entry on oeis.org
1, 0, 3, 6, 49, 300, 2491, 22890, 239457, 2782584, 35595091, 496577070, 7499663953, 121855323876, 2118793593099, 39245026343250, 771255810671041, 16025261292247920, 350956070419872547, 8078570913162379734, 194969375055353840241, 4922311437793379501340
Offset: 0
-
b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j,
`if`(j=1, 1-t, t))*binomial(n-1, j-1)*j!, j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
-
b[n_, t_] := b[n, t] = If[n == 0, t, Sum[b[n-j, If[j == 1, 1-t, t]] * Binomial[n-1, j-1]*j!, {j, 1, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 21 2017, after Alois P. Heinz *)
-
from sympy.core.cache import cacheit
from sympy import binomial, factorial as f
@cacheit
def b(n, t): return t if n==0 else sum(b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1)*f(j) for j in range(1, n + 1))
def a(n): return b(n, 1)
print([a(n) for n in range(51)]) # Indranil Ghosh, Aug 10 2017
A111753
Number of partitions of {1,..,n} into lists with an odd number of lists of size 1, where a list means an ordered subset, cf. A000262.
Original entry on oeis.org
0, 1, 0, 7, 24, 201, 1560, 14743, 154896, 1813969, 23346000, 327496071, 4970498280, 81121077337, 1416223931304, 26328776843671, 519178407998880, 10821355158998433, 237677397895531296, 5485802780426178439, 132728552830731814200, 3358841601972480225001
Offset: 0
-
b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j,
`if`(j=1, 1-t, t))*binomial(n-1, j-1)*j!, j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
-
b[n_, t_] := b[n, t] = If[n==0, t, Sum[b[n-j, If[j==1, 1-t, t]]*Binomial[ n-1, j-1]*j!, {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
-
from sympy.core.cache import cacheit
from sympy import binomial, factorial as f
@cacheit
def b(n, t): return t if n==0 else sum([b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1)*f(j) for j in range(1, n + 1)])
def a(n): return b(n, 0)
print([a(n) for n in range(51)]) # Indranil Ghosh, Aug 10 2017
A132959
Total number of all distinct list sizes in all partitions of [n] into lists, cf. A000262.
Original entry on oeis.org
1, 3, 19, 109, 881, 7621, 77785, 854225, 10750465, 143737381, 2121714761, 33426065905, 568250246305, 10242445089605, 197388381934801, 4003553262384961, 86010508861504385, 1939950117886565125
Offset: 1
-
Rest[ Range[0, 20]! CoefficientList[ Series[ Exp[x/(1 - x)] Sum[(-x)^k/(k!*(x^k - 1)), {k, 25}], {x, 0, 20}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
A088026
Number of "sets of even lists" for even n, cf. A000262.
Original entry on oeis.org
1, 2, 36, 1560, 122640, 15150240, 2695049280, 650948538240, 204637027795200, 81098021561356800, 39516616693678924800, 23204736106751520921600, 16152539421202464036556800, 13145716394493318293898240000, 12363004898960780220305909760000
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add((i->
b(n-i)*binomial(n-1, i-1)*i!)(2*j), j=1..n/2))
end:
a:= n-> b(2*n):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 01 2022
-
Table[n!*SeriesCoefficient[E^(x^2/(1-x^2)),{x,0,n}],{n,0,40,2}] (* Vaclav Kotesovec, Feb 25 2014 *)
-
x='x+O('x^66); /* (half) that many terms */
v=Vec(serlaplace(exp(x^2/(1-x^2))));
vector(#v\2,n, v[2*n-1])
/* Joerg Arndt, Jul 29 2012 */
A088312
Number of sets of lists (cf. A000262) with even number of lists.
Original entry on oeis.org
1, 0, 1, 6, 37, 260, 2101, 19362, 201097, 2326536, 29668681, 413257790, 6238931821, 101415565836, 1765092183037, 32734873484250, 644215775792401, 13404753632014352, 293976795292186897, 6775966692145553526, 163735077313046119861, 4138498600079573989140
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..444
- Peter Bala, Integer sequences that become periodic on reduction modulo k for all k
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- N. J. A. Sloane, LAH transform
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Cosh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
-
b:= proc(n, t) option remember; `if`(n=0, t, add(
b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
A088312 := n -> ifelse(n=0, 1, (1/2)*(n - 1)*n!*hypergeom([1 - n/2, 3/2 - n/2], [3/2, 3/2, 2], 1/4)): seq(simplify(A088312(n)), n = 0..21); # Peter Luschny, Dec 14 2022
-
With[{m=30}, CoefficientList[Series[Cosh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
Table[Sum[n!/(2*k)! Binomial[n - 1, 2*k - 1], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Emanuele Munarini, Sep 03 2017 *)
-
def A088312_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( cosh(x/(1-x)) ).egf_to_ogf().list()
A088312_list(40) # G. C. Greubel, Dec 13 2022
A088313
Number of "sets of lists" (cf. A000262) with an odd number of lists.
Original entry on oeis.org
0, 1, 2, 7, 36, 241, 1950, 18271, 193256, 2270017, 29272410, 410815351, 6231230412, 101560835377, 1769925341366, 32838929702671, 646218442877520, 13441862819232001, 294656673023216946, 6788407001443004647, 163962850573039534580, 4142654439686285737201
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..444
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- N. J. A. Sloane, LAH transform
-
R:=PowerSeriesRing(Rationals(), 30); [0] cat Coefficients(R!(Laplace( Sinh(x/(1-x)) ))); // G. C. Greubel, Dec 13 2022
-
b:= proc(n, t) option remember; `if`(n=0, t, add(
b(n-j, 1-t)*binomial(n-1, j-1)*j!, j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
A088313 := n -> ifelse(n=0, 0, n!*hypergeom([1/2 - n/2, 1 - n/2], [1/2, 1, 3/2], 1/4)): seq(simplify(A088313(n)), n = 0..21); # Peter Luschny, Dec 14 2022
-
With[{m=30}, CoefficientList[Series[Sinh[x/(1-x)], {x,0,m}], x] * Range[0,m]!] (* Vaclav Kotesovec, Jul 04 2015 *)
-
my(x='x+O('x^66)); concat(0, Vec(serlaplace(sinh(x/(1-x))))) \\ Joerg Arndt, Jul 16 2013
-
def A088313_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( sinh(x/(1-x)) ).egf_to_ogf().list()
A088313_list(40) # G. C. Greubel, Dec 13 2022
A097145
Total sum of minimum list sizes in all sets of lists of n-set, cf. A000262.
Original entry on oeis.org
0, 1, 5, 25, 157, 1101, 9211, 85513, 900033, 10402633, 133059331, 1836961941, 27619253113, 444584808253, 7678546353843, 140944884572521, 2751833492404321, 56691826303303953, 1233793951629951043, 28191548364561422173, 676190806704598883241
Offset: 0
For n=4 we have 73 sets of lists (cf. A000262): (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (3*4 ways), (12)(3)(4) (6*2 ways), (1)(2)(3)(4) (1 way); so a(n)= 24*4+24*1+12*2+12*1+1*1 = 157.
-
b:= proc(n, m) option remember; `if`(n=0, m, add(j!*
b(n-j, min(m, j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> `if`(n=0, 0, b(n, infinity)):
seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
-
b[n_, m_] := b[n, m] = If[n==0, m, Sum[j!*b[n-j, Min[m, j]]*Binomial[n-1, j - 1], {j, 1, n}]]; a[n_] := If[n==0, 0, b[n, Infinity]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 18 2017, after Alois P. Heinz *)
Showing 1-10 of 260 results.
Comments