Original entry on oeis.org
1, 9, 137, 2185, 34953, 559241, 8947849, 143165577, 2290649225, 36650387593, 586406201481, 9382499223689, 150119987579017, 2401919801264265, 38430716820228233, 614891469123651721, 9838263505978427529, 157412216095654840457, 2518595457530477447305
Offset: 0
A131865
Partial sums of powers of 16.
Original entry on oeis.org
1, 17, 273, 4369, 69905, 1118481, 17895697, 286331153, 4581298449, 73300775185, 1172812402961, 18764998447377, 300239975158033, 4803839602528529, 76861433640456465, 1229782938247303441, 19676527011956855057, 314824432191309680913, 5037190915060954894609
Offset: 0
a(3) = 1 + 16 + 256 + 4096 = 4369 = in binary: 1000100010001.
a(4) = (16^5 - 1)/15 = (4^5 + 1) * (4^5 - 1)/15 = 1025 * 1023/15 = 205 * 341 = 69905 = 11111_16. - _Bernard Schott_, Jun 06 2017
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Kival Ngaokrajang, Illustration of initial terms
- Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1. See Table 1.
- Simon Plouffe, Identities and approximations inspired from Ramanujan notebooks, III, 2009.
- Index entries related to partial sums.
- Index entries related to q-numbers.
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Cf.
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723. -
M. F. Hasler, Nov 05 2012
-
[(16^(n+1)-1)/15: n in [0..20]]; // Vincenzo Librandi, Sep 17 2011
-
A131865:=n->(16^(n+1)-1)/15: seq(A131865(n), n=0..30); # Wesley Ivan Hurt, Apr 29 2017
-
Table[(2^(4 n) - 1)/15, {n, 16}] (* Robert G. Wilson v, Aug 22 2007 *)
Accumulate[16^Range[0,20]] (* or *) LinearRecurrence[{17,-16},{1,17},20] (* Harvey P. Dale, Jul 19 2019 *)
-
a[0]:0$
a[n]:=16*a[n-1]+1$
A131865(n):=a[n]$
makelist(A131865(n),n,1,30); /* Martin Ettl, Nov 05 2012 */
-
A131865(n)=16^n\15 \\ M. F. Hasler, Nov 05 2012
-
def A131865(n): return (1<<(n+1<<2))//15 # Chai Wah Wu, Nov 10 2022
-
[gaussian_binomial(n,1,16) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
A098704
Decimal form of the binary numbers 10, 100010, 1000100010, 10001000100010, 100010001000100010,...
Original entry on oeis.org
2, 34, 546, 8738, 139810, 2236962, 35791394, 572662306, 9162596898, 146601550370, 2345624805922, 37529996894754, 600479950316066, 9607679205057058, 153722867280912930, 2459565876494606882
Offset: 2
-
s=0;lst={};Do[s+=2^n;AppendTo[lst, s], {n, 1, 2*5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008 *)
FromDigits[#,2]&/@Table[Join[PadRight[{},4n,{1,0,0,0}],{1,0}],{n,0,20}] (* Harvey P. Dale, Apr 06 2020 *)
-
for(n=0,20,print(2*sum(k=0,n,2^(4*k))))
for(k=0,20,print(2*(1-16^(k+1))/-15))
A349839
Triangle T(n,k) built by placing all ones on the left edge, [1,0,0,0] repeated on the right edge, and filling the body using the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 1, 4, 6, 4, 2, 0, 1, 5, 10, 10, 6, 2, 0, 1, 6, 15, 20, 16, 8, 2, 0, 1, 7, 21, 35, 36, 24, 10, 2, 1, 1, 8, 28, 56, 71, 60, 34, 12, 3, 0, 1, 9, 36, 84, 127, 131, 94, 46, 15, 3, 0, 1, 10, 45, 120, 211, 258, 225, 140, 61, 18, 3, 0, 1, 11, 55, 165, 331, 469, 483, 365, 201, 79, 21, 3, 1
Offset: 0
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 1, 0;
1, 3, 3, 1, 1;
1, 4, 6, 4, 2, 0;
1, 5, 10, 10, 6, 2, 0;
1, 6, 15, 20, 16, 8, 2, 0;
1, 7, 21, 35, 36, 24, 10, 2, 1;
1, 8, 28, 56, 71, 60, 34, 12, 3, 0;
1, 9, 36, 84, 127, 131, 94, 46, 15, 3, 0;
1, 10, 45, 120, 211, 258, 225, 140, 61, 18, 3, 0;
1, 11, 55, 165, 331, 469, 483, 365, 201, 79, 21, 3, 1;
-
Flatten[Table[CoefficientList[Series[(1-x*y)/((1-(x*y)^4)(1 - x - x*y)), {x, 0, 24}, {y, 0, 12}], {x, y}][[n+1,k+1]],{n,0,12},{k,0,n}]]
A115450
Number triangle (1/((1-x)(1-2x)),-x)-(x/((1-x)(1-2x)),-x^2) (expressed in the notation of Riordan arrays).
Original entry on oeis.org
1, 2, -1, 4, -3, 1, 8, -6, 3, -1, 16, -12, 7, -3, 1, 32, -24, 14, -7, 3, -1, 64, -48, 28, -15, 7, -3, 1, 128, -96, 56, -30, 15, -7, 3, -1, 256, -192, 112, -60, 31, -15, 7, -3, 1, 512, -384, 224, -120, 62, -31, 15, -7, 3, -1, 1024, -768, 448, -240, 124, -63, 31, -15, 7, -3, 1, 2048, -1536, 896, -480, 248, -126, 63, -31, 15, -7, 3
Offset: 0
Triangle begins
1,
2, -1,
4, -3, 1,
8, -6, 3, -1,
16, -12, 7, -3, 1,
32, -24, 14, -7, 3, -1,
64, -48, 28, -15, 7, -3, 1,
128, -96, 56, -30, 15, -7, 3, -1,
256, -192, 112, -60, 31, -15, 7, -3, 1,
512, -384, 224, -120, 62, -31, 15, -7, 3, -1,
1024, -768, 448, -240, 124, -63, 31, -15, 7, -3, 1,
2048, -1536, 896, -480, 248, -126, 63, -31, 15, -7, 3, -1,
4096, -3072, 1792, -960, 496, -252, 127, -63, 31, -15, 7, -3, 1
A349842
Expansion of 1/((1 - 2*x)*(1 + x + x^2 + x^3 + x^4)).
Original entry on oeis.org
1, 1, 2, 4, 8, 17, 33, 66, 132, 264, 529, 1057, 2114, 4228, 8456, 16913, 33825, 67650, 135300, 270600, 541201, 1082401, 2164802, 4329604, 8659208, 17318417, 34636833, 69273666, 138547332, 277094664, 554189329, 1108378657, 2216757314, 4433514628, 8867029256, 17734058513
Offset: 0
-
CoefficientList[Series[(1 - x)/((1 - x^5)(1 - 2x)), {x, 0, 35}], x]
A181586
a(0)=0; a(n+1) = 2*a(n) + period 4:repeat 0,1,-2,1.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 5, 8, 17, 34, 69, 136, 273, 546, 1093, 2184, 4369, 8738, 17477, 34952, 69905, 139810, 279621, 559240, 1118481, 2236962, 4473925, 8947848, 17895697, 35791394, 71582789, 143165576, 286331153, 572662306, 1145324613, 2290649224
Offset: 0
a(1)=2*a(0)+0=0, a(2)=2*a(1)+1=0+1=1, a(3)=2*a(2)-2=2-2=0, a(4)=2*a(3)+1=0+1=1, a(5)=2*a(4)+0=2+0=2, a(6)=2*a(5)+1=4+1=5.
-
a:= proc(n) option remember;
`if`(n=0, 0, 2*a(n-1) +[0, 1, -2, 1][irem(n-1, 4)+1])
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jan 30 2011
-
LinearRecurrence[{1, 1, 1, 2}, {0, 0, 1, 0}, 40] (* Jean-François Alcover, May 18 2018 *)
A268349
Expansion of (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4).
Original entry on oeis.org
1, 2, 3, 4, 20, 45, 109, 275, 708, 1765, 4442, 11196, 28207, 70985, 178755, 450130, 1133423, 2853888, 7186144, 18094709, 45562353, 114725755, 288879164, 727396569, 1831581574, 4611915224, 11612784735, 29240946181, 73628587619, 185396495082
Offset: 0
-
[n le 4 select n else Self(n-1)+2*Self(n-2)+3*Self(n-3)+4*Self(n-4): n in [1..35]]; // Vincenzo Librandi, Feb 04 2016
-
LinearRecurrence[{1, 2, 3, 4}, {1, 2, 3, 4}, 30]
CoefficientList[Series[(1 + x - x^2 - 6 x^3) / (1 - x - 2 x^2 - 3 x^3 - 4 x^4), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *)
-
Vec((1+x-x^2-6*x^3)/(1-x-2*x^2-3*x^3-4*x^4) + O(x^40)) \\ Michel Marcus, Feb 02 2016
Showing 1-8 of 8 results.
Comments