cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A139760 First quadrisection of A115451.

Original entry on oeis.org

1, 9, 137, 2185, 34953, 559241, 8947849, 143165577, 2290649225, 36650387593, 586406201481, 9382499223689, 150119987579017, 2401919801264265, 38430716820228233, 614891469123651721, 9838263505978427529, 157412216095654840457, 2518595457530477447305
Offset: 0

Views

Author

Paul Curtz, May 20 2008

Keywords

Programs

Formula

a(n) = 16*a(n-1) - 7.
G.f.: ( 1-8*x ) / ( (16*x-1)*(x-1) ). - R. J. Mathar, Feb 06 2011

A131865 Partial sums of powers of 16.

Original entry on oeis.org

1, 17, 273, 4369, 69905, 1118481, 17895697, 286331153, 4581298449, 73300775185, 1172812402961, 18764998447377, 300239975158033, 4803839602528529, 76861433640456465, 1229782938247303441, 19676527011956855057, 314824432191309680913, 5037190915060954894609
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

16 = 2^4 is the growth measure for the Jacobsthal spiral (compare with phi^4 for the Fibonacci spiral). - Paul Barry, Mar 07 2008
Second quadrisection of A115451. - Paul Curtz, May 21 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=16, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1) = det(A). - Milan Janjic, Feb 21 2010
Partial sums are in A014899. Also, the sequence is related to A014931 by A014931(n+1) = (n+1)*a(n) - Sum_{i=0..n-1} a(i) for n>0. - Bruno Berselli, Nov 07 2012
a(n) is the total number of holes in a certain box fractal (start with 16 boxes, 1 hole) after n iterations. See illustration in links. - Kival Ngaokrajang, Jan 28 2015
Except for 1 and 17, all terms are Brazilian repunits numbers in base 16, and so belong to A125134. All terms >= 273 are composite because a(n) = ((4^(n+1) + 1) * (4^(n+1) - 1))/15. - Bernard Schott, Jun 06 2017
The sequence in binary is 1, 10001, 100010001, 1000100010001, 10001000100010001, ... cf. Plouffe link, A330135. - Frank Ellermann, Mar 05 2020

Examples

			a(3) = 1 + 16 + 256 + 4096 = 4369 = in binary: 1000100010001.
a(4) = (16^5 - 1)/15 = (4^5 + 1) * (4^5 - 1)/15 = 1025 * 1023/15 = 205 * 341 = 69905 = 11111_16. - _Bernard Schott_, Jun 06 2017
		

Crossrefs

Programs

Formula

a(n) = if n=0 then 1 else a(n-1) + A001025(n).
for n > 0: A131851(a(n)) = n and abs(A131851(m)) < n for m < a(n).
a(n) = A098704(n+2)/2.
a(n) = (16^(n+1) - 1)/15. - Bernard Schott, Jun 06 2017
a(n) = (A001025(n+1) - 1)/15.
a(n) = 16*a(n-1) + 1. - Paul Curtz, May 20 2008
G.f.: 1 / ( (16*x-1)*(x-1) ). - R. J. Mathar, Feb 06 2011
E.g.f.: exp(x)*(16*exp(15*x) - 1)/15. - Stefano Spezia, Mar 06 2020

A098704 Decimal form of the binary numbers 10, 100010, 1000100010, 10001000100010, 100010001000100010,...

Original entry on oeis.org

2, 34, 546, 8738, 139810, 2236962, 35791394, 572662306, 9162596898, 146601550370, 2345624805922, 37529996894754, 600479950316066, 9607679205057058, 153722867280912930, 2459565876494606882
Offset: 2

Views

Author

Simone Severini, Oct 26 2004

Keywords

Comments

Decimal form of the hexadecimal numbers 2, 22, 222, 2222, 22222, 222222, ...; e.g., 2*16^0 + 2*16^1 = 2 + 32 = 34. - Zerinvary Lajos, Feb 01 2007
For n>0: A131852(a(n+1))=n and ABS(A131852(m))A131865(n-2). - Reinhard Zumkeller, Jul 22 2007
Third quadrisection of A115451. - Klaus Purath, Mar 14 2021

Programs

  • Mathematica
    s=0;lst={};Do[s+=2^n;AppendTo[lst, s], {n, 1, 2*5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008 *)
    FromDigits[#,2]&/@Table[Join[PadRight[{},4n,{1,0,0,0}],{1,0}],{n,0,20}] (* Harvey P. Dale, Apr 06 2020 *)
  • PARI
    for(n=0,20,print(2*sum(k=0,n,2^(4*k))))
    for(k=0,20,print(2*(1-16^(k+1))/-15))

Formula

lim_{n -> infinity} a(n)/a(n-k) = 2^(4*(n-k)).
2*Sum_{k=0..n} 16^k = 2*(16^(n+1) - 1)/15.
From Klaus Purath, Mar 14 2021: (Start)
a(n) = (2^(4*n-3)-2)/15.
a(n) = 17*a(n-1) - 16*a(n-2).
a(n) = 16*a(n-1) + 2.
a(n) = 2*16^(n-2) + a(n-1).
a(n) = 2*A131865(n-2). (End)

Extensions

More terms from Ray Chandler, Nov 02 2004
More terms from Vladimir Joseph Stephan Orlovsky, Nov 07 2008

A349839 Triangle T(n,k) built by placing all ones on the left edge, [1,0,0,0] repeated on the right edge, and filling the body using the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 1, 4, 6, 4, 2, 0, 1, 5, 10, 10, 6, 2, 0, 1, 6, 15, 20, 16, 8, 2, 0, 1, 7, 21, 35, 36, 24, 10, 2, 1, 1, 8, 28, 56, 71, 60, 34, 12, 3, 0, 1, 9, 36, 84, 127, 131, 94, 46, 15, 3, 0, 1, 10, 45, 120, 211, 258, 225, 140, 61, 18, 3, 0, 1, 11, 55, 165, 331, 469, 483, 365, 201, 79, 21, 3, 1
Offset: 0

Views

Author

Michael A. Allen, Dec 01 2021

Keywords

Comments

This is the m=4 member in the sequence of triangles A007318, A059259, A118923, A349839, A349841 which have all ones on the left side, ones separated by m-1 zeros on the other side, and whose interiors obey Pascal's recurrence.
T(n,k) is the (n,n-k)-th entry of the (1/(1-x^4),x/(1-x)) Riordan array.
For n>0, T(n,n-1) = A008621(n-1).
For n>1, T(n,n-2) = A001972(n-2).
For n>2, T(n,n-3) = A122046(n).
Sums of rows give A115451.
Sums of antidiagonals give A349840.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   1,   0;
  1,   2,   1,   0;
  1,   3,   3,   1,   1;
  1,   4,   6,   4,   2,   0;
  1,   5,  10,  10,   6,   2,   0;
  1,   6,  15,  20,  16,   8,   2,   0;
  1,   7,  21,  35,  36,  24,  10,   2,   1;
  1,   8,  28,  56,  71,  60,  34,  12,   3,   0;
  1,   9,  36,  84, 127, 131,  94,  46,  15,   3,   0;
  1,  10,  45, 120, 211, 258, 225, 140,  61,  18,   3,   0;
  1,  11,  55, 165, 331, 469, 483, 365, 201,  79,  21,   3,   1;
		

Crossrefs

Other members of sequence of triangles: A007318, A059259, A118923, A349841.

Programs

  • Mathematica
    Flatten[Table[CoefficientList[Series[(1-x*y)/((1-(x*y)^4)(1 - x - x*y)), {x, 0, 24}, {y, 0, 12}], {x, y}][[n+1,k+1]],{n,0,12},{k,0,n}]]

Formula

G.f.: (1-x*y)/((1-(x*y)^4)(1-x-x*y)) in the sense that T(n,k) is the coefficient of x^n*y^k in the series expansion of the g.f.
T(n,0) = 1.
T(n,n) = delta(n mod 4,0).
T(n,1) = n-1 for n>0.
T(n,2) = (n-1)*(n-2)/2 for n>1.
T(n,3) = (n-1)*(n-2)*(n-3)/6 for n>2.
T(n,4) = C(n-1,4) + 1 for n>3.
T(n,5) = C(n-1,5) + n - 5 for n>4.
For 0 <= k < n, T(n,k) = (n-k)*Sum_{j=0..floor(k/4)} binomial(n-4*j,n-k)/(n-4*j).
The g.f. of the n-th subdiagonal is 1/((1-x^4)(1-x)^n).

A115450 Number triangle (1/((1-x)(1-2x)),-x)-(x/((1-x)(1-2x)),-x^2) (expressed in the notation of Riordan arrays).

Original entry on oeis.org

1, 2, -1, 4, -3, 1, 8, -6, 3, -1, 16, -12, 7, -3, 1, 32, -24, 14, -7, 3, -1, 64, -48, 28, -15, 7, -3, 1, 128, -96, 56, -30, 15, -7, 3, -1, 256, -192, 112, -60, 31, -15, 7, -3, 1, 512, -384, 224, -120, 62, -31, 15, -7, 3, -1, 1024, -768, 448, -240, 124, -63, 31, -15, 7, -3, 1, 2048, -1536, 896, -480, 248, -126, 63, -31, 15, -7, 3
Offset: 0

Views

Author

Paul Barry, Jan 22 2006

Keywords

Comments

Row sums are A115451. Inverse is A115452. Row sums of inverse matrix are the Fredholm-Rueppel sequence A036987.

Examples

			Triangle begins
1,
2, -1,
4, -3, 1,
8, -6, 3, -1,
16, -12, 7, -3, 1,
32, -24, 14, -7, 3, -1,
64, -48, 28, -15, 7, -3, 1,
128, -96, 56, -30, 15, -7, 3, -1,
256, -192, 112, -60, 31, -15, 7, -3, 1,
512, -384, 224, -120, 62, -31, 15, -7, 3, -1,
1024, -768, 448, -240, 124, -63, 31, -15, 7, -3, 1,
2048, -1536, 896, -480, 248, -126, 63, -31, 15, -7, 3, -1,
4096, -3072, 1792, -960, 496, -252, 127, -63, 31, -15, 7, -3, 1
		

Formula

Column k has g.f. 1/((1-x)(1-2x))*(-x)^k*(1-x^(k+1)); Number triangle T(n, k)=(if(k<=n, 2^(n-k+1)-1, 0)-if(k<=floor(n/2), 2^(n-2k)-1, 0))(-1)^k.

A349842 Expansion of 1/((1 - 2*x)*(1 + x + x^2 + x^3 + x^4)).

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 33, 66, 132, 264, 529, 1057, 2114, 4228, 8456, 16913, 33825, 67650, 135300, 270600, 541201, 1082401, 2164802, 4329604, 8659208, 17318417, 34636833, 69273666, 138547332, 277094664, 554189329, 1108378657, 2216757314, 4433514628, 8867029256, 17734058513
Offset: 0

Views

Author

Michael A. Allen, Dec 13 2021

Keywords

Comments

Number of ways to tile an n-board (an n X 1 array of 1 X 1 cells) using squares, dominoes, trominoes, tetrominoes, black pentominoes, and white pentominoes.
Row sums of A349841.

Crossrefs

Row sums of triangles in the same family as A349841: A000079, A001045, A077947, A115451.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/((1 - x^5)(1 - 2x)), {x, 0, 35}], x]

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + 2*a(n-5) + delta(n,0), a(n<0)=0.
a(n) = 2*a(n-1) + a(n-5) - 2*a(n-6) + delta(n,0) - delta(n,1), a(n<0)=0.
G.f.: 1/(1-x-x^2-x^3-x^4-2*x^5).

A181586 a(0)=0; a(n+1) = 2*a(n) + period 4:repeat 0,1,-2,1.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 5, 8, 17, 34, 69, 136, 273, 546, 1093, 2184, 4369, 8738, 17477, 34952, 69905, 139810, 279621, 559240, 1118481, 2236962, 4473925, 8947848, 17895697, 35791394, 71582789, 143165576, 286331153, 572662306, 1145324613, 2290649224
Offset: 0

Views

Author

Paul Curtz, Jan 30 2011

Keywords

Comments

a(n) + a(n+1) + a(n+2) + a(n+3) = 2^n.

Examples

			a(1)=2*a(0)+0=0, a(2)=2*a(1)+1=0+1=1, a(3)=2*a(2)-2=2-2=0, a(4)=2*a(3)+1=0+1=1, a(5)=2*a(4)+0=2+0=2, a(6)=2*a(5)+1=4+1=5.
		

Crossrefs

Cf. A180343.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 0, 2*a(n-1) +[0, 1, -2, 1][irem(n-1, 4)+1])
        end:
    seq(a(n), n=0..40); # Alois P. Heinz, Jan 30 2011
  • Mathematica
    LinearRecurrence[{1, 1, 1, 2}, {0, 0, 1, 0}, 40] (* Jean-François Alcover, May 18 2018 *)

Formula

a(n) = a(n-4) + 2^(n-4).
a(n) = -a(n-2) + A078008(n).
a(n) = a(n-2) + A118405(n-2) unsigned.
a(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) (**).
G.f.: x^2*(-1+x) / ( (2*x-1)*(1+x)*(x^2+1) ). - R. J. Mathar, Feb 06 2011

A268349 Expansion of (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4).

Original entry on oeis.org

1, 2, 3, 4, 20, 45, 109, 275, 708, 1765, 4442, 11196, 28207, 70985, 178755, 450130, 1133423, 2853888, 7186144, 18094709, 45562353, 114725755, 288879164, 727396569, 1831581574, 4611915224, 11612784735, 29240946181, 73628587619, 185396495082
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = b(n - 1) + 2*b(n - 2) + 3*b(n - 3) + 4*b(n - 4) + ... + k*b(n - k), with n > k - 1 and initial values b(i-1) = i for i = 1..k, is (Sum_{m = 0..(k - 1)} (-m^3 - 3*m^2 + 4*m + 6)*x^m/6)/(1 - Sum_{m = 1..k} m*x^m).

Crossrefs

Programs

  • Magma
    [n le 4 select n else Self(n-1)+2*Self(n-2)+3*Self(n-3)+4*Self(n-4): n in [1..35]]; // Vincenzo Librandi, Feb 04 2016
  • Mathematica
    LinearRecurrence[{1, 2, 3, 4}, {1, 2, 3, 4}, 30]
    CoefficientList[Series[(1 + x - x^2 - 6 x^3) / (1 - x - 2 x^2 - 3 x^3 - 4 x^4), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *)
  • PARI
    Vec((1+x-x^2-6*x^3)/(1-x-2*x^2-3*x^3-4*x^4) + O(x^40)) \\ Michel Marcus, Feb 02 2016
    

Formula

G.f.: (1 + x - x^2 - 6*x^3)/(1 - x - 2*x^2 - 3*x^3 - 4*x^4).
Showing 1-8 of 8 results.