A151898 First differences of Frobenius numbers for 7 successive numbers A138987.
1, 1, 1, 1, 1, 9, 2, 2, 2, 2, 2, 16, 3, 3, 3, 3, 3, 23, 4, 4, 4, 4, 4, 30, 5, 5, 5, 5, 5, 37, 6, 6, 6, 6, 6, 44, 7, 7, 7, 7, 7, 51, 8, 8, 8, 8, 8, 58, 9, 9, 9, 9, 9, 65, 10, 10, 10, 10, 10, 72, 11, 11, 11, 11, 11, 79, 12, 12, 12, 12, 12, 86, 13, 13, 13, 13, 13, 93, 14, 14, 14, 14, 14, 100, 15
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2,0,0,0,0,0,-1).
Crossrefs
Programs
-
Mathematica
a = {}; Do[AppendTo[a, FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7}]], {n, 1, 100}]; Differences[a] Differences[Table[FrobeniusNumber[Range[n,n+6]],{n,2,90}]] (* or *) LinearRecurrence[ {0,0,0,0,0,2,0,0,0,0,0,-1},{1,1,1,1,1,9,2,2,2,2,2,16},90] (* Harvey P. Dale, Jul 26 2024 *)
Formula
G.f.: -x*(2*x^11-9*x^5-x^4-x^3-x^2-x-1) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2). [Colin Barker, Dec 13 2012]
Comments