Original entry on oeis.org
7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384
Offset: 0
Sequences of the form (2*m+1)*2^n:
A000079 (m=0),
A007283 (m=1),
A020714 (m=2), this sequence (m=3),
A005010 (m=4),
A005015 (m=5),
A005029 (m=6),
A110286 (m=7),
A110287 (m=8),
A110288 (m=9),
A175805 (m=10),
A248646 (m=11),
A164161 (m=12),
A175806 (m=13),
A257548 (m=15).
Row sums of (6, 1)-Pascal triangle
A093563 and of (1, 6)-Pascal triangle
A096956, n>=1.
A091629
Product of digits associated with A091628(n). Essentially the same as A007283.
Original entry on oeis.org
6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1
Sequences of the form (2*m+1)*2^n:
A000079 (m=0),
A007283 (m=1),
A020714 (m=2),
A005009 (m=3),
A005010 (m=4),
A005015 (m=5),
A005029 (m=6),
A110286 (m=7),
A110287 (m=8),
A110288 (m=9),
A175805 (m=10),
A248646 (m=11),
A164161 (m=12),
A175806 (m=13),
A257548 (m=15).
A110287
a(n) = 17*2^n.
Original entry on oeis.org
17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 8704, 17408, 34816, 69632, 139264, 278528, 557056, 1114112, 2228224, 4456448, 8912896, 17825792, 35651584, 71303168, 142606336, 285212672, 570425344, 1140850688, 2281701376, 4563402752, 9126805504, 18253611008
Offset: 0
Sequences of the form (2*m+1)*2^n:
A000079 (m=0),
A003945 (m=1),
A020714 (m=2),
A005009 (m=3),
A005010 (m=4),
A005015 (m=5),
A005029 (m=6),
A110286 (m=7), this sequence (m=8),
A110288 (m=9),
A175805 (m=10),
A248646 (m=11),
A164161 (m=12),
A175806 (m=13),
A257548 (m=15).
A110288
a(n) = 19*2^n.
Original entry on oeis.org
19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 19456, 38912, 77824, 155648, 311296, 622592, 1245184, 2490368, 4980736, 9961472, 19922944, 39845888, 79691776, 159383552, 318767104, 637534208, 1275068416, 2550136832, 5100273664, 10200547328, 20401094656
Offset: 0
Sequences of the form (2*m+1)*2^n:
A000079 (m=0),
A007283 (m=1),
A020714 (m=2),
A005009 (m=3),
A005010 (m=4),
A005015 (m=5),
A005029 (m=6),
A110286 (m=7),
A110287 (m=8), this sequence (m=9),
A175805 (m=10),
A248646 (m=11),
A164161 (m=12),
A175806 (m=13),
A257548 (m=15).
A247283
Positions of subrecords in A048673.
Original entry on oeis.org
5, 7, 9, 15, 18, 27, 36, 54, 72, 108, 144, 216, 288, 432, 576, 864, 1152, 1728, 2304, 3456, 4608, 6912, 9216, 13824, 18432, 27648, 36864, 55296, 73728, 110592, 147456, 221184, 294912, 442368, 589824, 884736, 1179648, 1769472, 2359296, 3538944, 4718592, 7077888
Offset: 1
The fourth (A246360(4) = 5) and the fifth (A246360(5) = 8) record of A048673 (1, 2, 3, 5, 4, 8, ...) occur at A029744(4) = 4 and A029744(5) = 6 respectively. In range between, the maximum must occur at 5, thus a(4-3) = a(1) = 5. (All the previous records of A048673 are in consecutive positions, 1, 2, 3, 4, thus there are no previous subrecords).
The ninth (A246360(9) = 68) and the tenth (A246360(10) = 122) record of A048673 occur at A029744(9) = 24 and A029744(10) = 32 respectively. For n in range 25 .. 31 the values of A048673 are: 25, 26, 63, 50, 16, 53, 19, of which 63 is the maximum, and because it occurs at n = 27, we have a(9-3) = a(6) = 27.
A247284 gives the corresponding values.
-
\\ Compute A245449, A246360, A247283 and A247284 at the same time:
default(primelimit,(2^31)+(2^30));
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
A048673(n) = (A003961(n)+1)/2;
n = 0; i2 = 0; i3 = 0; ir = 0; prevmax = 0; submax = 0; while(n < 2^32, n++; a_n = A048673(n); if((A048673(a_n) == n), i2++; write("b245449.txt", i2, " ", n)); if((a_n > prevmax), if(submax > 0, i3++; write("b247283.txt", i3, " ", submaxpt); write("b247284.txt", i3, " ", submax)); prevmax = a_n; submax = 0; ir++; write("b029744_empirical.txt", ir, " ", n); write("b246360_empirical.txt", ir, " ", a_n), if((a_n > submax), submax = a_n; submaxpt = n)));
-
(definec (A247283 n) (max_pt_in_range A048673 (+ (A029744 (+ n 3)) 1) (- (A029744 (+ n 4)) 1)))
(define (max_pt_in_range intfun lowlim uplim) (let loop ((i (+ 1 lowlim)) (maxnow (intfun lowlim)) (maxpt lowlim)) (cond ((> i uplim) maxpt) (else (let ((v (intfun i))) (if (> v maxnow) (loop (+ 1 i) v i) (loop (+ 1 i) maxnow maxpt)))))))
A155118
Array T(n,k) read by antidiagonals: the k-th term of the n-th iterated differences of A140429.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 5, 8, 12, 18, 27, 11, 16, 24, 36, 54, 81, 21, 32, 48, 72, 108, 162, 243, 43, 64, 96, 144, 216, 324, 486, 729, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 171, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 341, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0
The array starts in row n=0 with columns k>=0 as:
0 1 3 9 27 81 243 729 2187 ... A140429;
1 2 6 18 54 162 486 1458 4374 ... A025192;
1 4 12 36 108 324 972 2916 8748 ... A003946;
3 8 24 72 216 648 1944 5832 17496 ... A080923;
5 16 48 144 432 1296 3888 11664 34992 ... A257970;
11 32 96 288 864 2592 7776 23328 69984 ...
21 64 192 576 1728 5184 15552 46656 139968 ...
Antidiagonal triangle begins as:
0;
1, 1;
1, 2, 3;
3, 4, 6, 9;
5, 8, 12, 18, 27;
11, 16, 24, 36, 54, 81;
21, 32, 48, 72, 108, 162, 243;
43, 64, 96, 144, 216, 324, 486, 729;
85, 128, 192, 288, 432, 648, 972, 1458, 2187; - _G. C. Greubel_, Mar 25 2021
-
t:= func< n,k | k eq 0 select (2^(n-k) -(-1)^(n-k))/3 else 2^(n-k)*3^(k-1) >;
[t(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 25 2021
-
T:=proc(n,k)if(k>0)then return 2^n*3^(k-1):else return (2^n - (-1)^n)/3:fi:end:
for d from 0 to 8 do for m from 0 to d do print(T(d-m,m)):od:od: # Nathaniel Johnston, Apr 13 2011
-
t[n_, k_]:= If[k==0, (2^(n-k) -(-1)^(n-k))/3, 2^(n-k)*3^(k-1)];
Table[t[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
-
def A155118(n,k): return (2^(n-k) -(-1)^(n-k))/3 if k==0 else 2^(n-k)*3^(k-1)
flatten([[A155118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 25 2021
A159274
a(0)=209; for n > 0, a(n) = a(n-1) + floor(sqrt(a(n-1))).
Original entry on oeis.org
209, 223, 237, 252, 267, 283, 299, 316, 333, 351, 369, 388, 407, 427, 447, 468, 489, 511, 533, 556, 579, 603, 627, 652, 677, 703, 729, 756, 783, 810, 838, 866, 895, 924, 954, 984, 1015, 1046, 1078, 1110, 1143, 1176, 1210, 1244, 1279, 1314, 1350, 1386
Offset: 0
-
[n eq 1 select 209 else Self(n-1)+Floor(Sqrt (Self(n-1))):n in [1..30]]; // Marius A. Burtea, Jan 07 2020
-
NestList[#+Floor[Sqrt[#]]&,209,50] (* Harvey P. Dale, Jun 12 2017 *)
Showing 1-7 of 7 results.
Comments