A028859
a(n+2) = 2*a(n+1) + 2*a(n); a(0) = 1, a(1) = 3.
Original entry on oeis.org
1, 3, 8, 22, 60, 164, 448, 1224, 3344, 9136, 24960, 68192, 186304, 508992, 1390592, 3799168, 10379520, 28357376, 77473792, 211662336, 578272256, 1579869184, 4316282880, 11792304128, 32217174016, 88018956288, 240472260608, 656982433792, 1794909388800, 4903783645184, 13397386067968
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 73).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, and Manon Stipulanti, Combinatorics on words and generating Dirichlet series of automatic sequences, arXiv:2401.13524 [math.CO], 2025. See p. 14.
- Joerg Arndt, Matters Computational (The Fxtbook), section 14.9 "Strings with no two consecutive zeros", pp.318-320.
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), #12.7.8.
- Moussa Benoumhani, On the Modes of the Independence Polynomial of the Centipede, Journal of Integer Sequences, Vol. 15 (2012), #12.5.1.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 Example 7.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- P. Z. Chinn, R. Grimaldi, and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Article 07.1.5, 10 (2007) 1-13.
- Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- J. Shallit, Proof of Irvine's conjecture via mechanized guessing, arXiv preprint arXiv:2310.14252 [math.CO], October 22 2023.
- Eric Weisstein's World of Mathematics, Centipede Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (2,2).
Cf.
A155020 (same sequence with term 1 prepended).
-
a028859 n = a028859_list !! n
a028859_list =
1 : 3 : map (* 2) (zipWith (+) a028859_list (tail a028859_list))
-- Reinhard Zumkeller, Oct 15 2011
-
a[0]:=1:a[1]:=3:for n from 2 to 24 do a[n]:=2*a[n-1]+2*a[n-2] od: seq(a[n],n=0..24); # Emeric Deutsch
-
a[n_]:=(MatrixPower[{{1,3},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
Table[2^(n - 1) Hypergeometric2F1[(1 - n)/2, -n/2, -n, -2], {n, 20}] (* Eric W. Weisstein, Jun 14 2017 *)
LinearRecurrence[{2, 2}, {1, 3}, 20] (* Eric W. Weisstein, Jun 14 2017 *)
-
a(n)=([1,3;1,1]^n*[2;1])[2,1] \\ Charles R Greathouse IV, Mar 27 2012
-
A028859(n)=([1,1]*[2,2;1,0]^n)[1] \\ M. F. Hasler, Aug 06 2018
A008466
a(n) = 2^n - Fibonacci(n+2).
Original entry on oeis.org
0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880, 1815, 3719, 7582, 15397, 31171, 62952, 126891, 255379, 513342, 1030865, 2068495, 4147936, 8313583, 16655823, 33358014, 66791053, 133703499, 267603416, 535524643, 1071563515, 2143959070, 4289264409, 8580707127
Offset: 0
From _Gus Wiseman_, Jun 25 2020: (Start)
The a(2) = 1 through a(5) = 19 compositions of n + 1 with at least one part >= 3 are:
(3) (4) (5) (6)
(1,3) (1,4) (1,5)
(3,1) (2,3) (2,4)
(3,2) (3,3)
(4,1) (4,2)
(1,1,3) (5,1)
(1,3,1) (1,1,4)
(3,1,1) (1,2,3)
(1,3,2)
(1,4,1)
(2,1,3)
(2,3,1)
(3,1,2)
(3,2,1)
(4,1,1)
(1,1,1,3)
(1,1,3,1)
(1,3,1,1)
(3,1,1,1)
(End)
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, p. 300, 1968.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 14, Exercise 1.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 301 terms from T. D. Noe)
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2001. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- Simon Cowell, A Formula for the Reliability of a d-dimensional Consecutive-k-out-of-n:F System, arXiv preprint arXiv:1506.03580 [math.CO], 2015.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1020
- T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
- B. E. Merkel, Probabilities of Consecutive Events in Coin Flipping, Master's Thesis, Univ. Cincinatti, May 11 2011.
- D. J. Persico and H. C. Friedman, Another Coin Tossing Problem, Problem 62-6, SIAM Review, 6 (1964), 313-314.
- Eric Weisstein's World of Mathematics, Run.
- Index entries for sequences related to dismal (or lunar) arithmetic
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-2).
The non-contiguous version is
A335455.
-
[2^n-Fibonacci(n+2): n in [0..40]]; // Vincenzo Librandi, Apr 27 2015
-
a:= n-> (<<3|1|0>, <-1|0|1>, <-2|0|0>>^n)[1, 3]:
seq(a(n), n=0..50); # Alois P. Heinz, Jul 18 2008
# second Maple program:
with(combinat): F:=fibonacci; f:=n->add(2^(n-1-i)*F(i),i=0..n-1); [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 31 2014
-
Table[2^n-Fibonacci[n+2],{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2008 *)
MMM = 30;
For[ M=2, M <= MMM, M++,
vlist = Array[x, M];
cl[i_] := And[ x[i], x[i+1] ];
cl2 = False; For [ i=1, i <= M-1, i++, cl2 = Or[cl2, cl[i]] ];
R[M] = SatisfiabilityCount[ cl2, vlist ] ]
Table[ R[M], {M,2,MMM}]
(* Find Boolean values of variables that satisfy the formula x1 x2 + x2 x3 + ... + xn-1 xn = 1; N. J. A. Sloane, Apr 23 2011 *)
LinearRecurrence[{3,-1,-2},{0,0,1},40] (* Harvey P. Dale, Aug 09 2013 *)
nn=33; a=1/(1-2x); b=1/(1-2x^2-x^4-x^6/(1-x^2));
CoefficientList[Series[b(a x^3/(1-x^2)+x^2a),{x,0,nn}],x] (* Geoffrey Critzer, Dec 30 2013 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n+1],Max@@#>2&]],{n,0,10}] (* Gus Wiseman, Jun 25 2020 *)
-
a(n) = 2^n-fibonacci(n+2) \\ Charles R Greathouse IV, Feb 03 2014
-
def A008466(n): return 2^n - fibonacci(n+2) # G. C. Greubel, Apr 23 2025
A186314
Number of ternary strings of length n which contain 01.
Original entry on oeis.org
0, 0, 1, 6, 26, 99, 352, 1200, 3977, 12918, 41338, 130779, 410048, 1276512, 3950929, 12170598, 37343834, 114209811, 348332320, 1059927312, 3218870105, 9758944470, 29544747706, 89335651851, 269843267456, 814337329344, 2455598257057, 7399746051270
Offset: 0
The recursive formula is based on extending such a string of length n-1 with {0,1,2} or extending a non-matching string of length (n-2) with "01". For n=2, there is just 1 string: "01". For n=3, we append {0,1,2} to "01" and append "01" to {"0","1","2"}, the three non-matching strings of length 1, for a total of a(3)=6.
Cf.
A186244 (ternary strings which contain 00).
-
nn=20;CoefficientList[Series[1/(1-3x)-1/(x^2+(1-3x)),{x,0,nn}],x] (* Geoffrey Critzer, Dec 25 2013 *)
LinearRecurrence[{6,-10,3},{0,0,1},30] (* Harvey P. Dale, Jun 14 2020 *)
A231430
Number of ternary sequences which contain 000.
Original entry on oeis.org
0, 0, 0, 1, 5, 21, 81, 295, 1037, 3555, 11961, 39667, 130049, 422403, 1361385, 4359115, 13880129, 43984227, 138795849, 436367131, 1367434577, 4272615603, 13315096089, 41397076939, 128429930465, 397665266595, 1229127726825, 3792875384251, 11686625364785
Offset: 0
For n = 3, the only string is 000.
For n = 4, the 5 strings are: 0000,0001,0002,1000,2000.
For n = 5, there are: 1 with 5 0's, 12 with 4 0's, and 8 with just 3; total 21.
-
t = {0, 0, 0, 1}; Do[AppendTo[t, 3 t[[-1]] + 2*(3^(n - 4) - t[[-4]])], {n, 4, 30}]; t (* T. D. Noe, Nov 11 2013 *)
(* or *)
nn=28;r=Solve[{s==2x s+2x a+2x b+1,a==x s,b==x a,c==3x c+x b},{s,a,b,c}];CoefficientList[Series[c/.r,{x,0,nn}],x] (* Geoffrey Critzer, Jan 14 2014 *)
CoefficientList[Series[x^3/(1-5x+4x^2+4x^3+6x^4),{x,0,40}],x] (* or *) LinearRecurrence[{5,-4,-4,-6},{0,0,0,1},40] (* Harvey P. Dale, Jul 27 2021 *)
A340156
Square array read by upward antidiagonals: T(n, k) is the number of n-ary strings of length k containing 00.
Original entry on oeis.org
1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 9, 40, 79, 43, 1, 11, 65, 205, 281, 94, 1, 13, 96, 421, 991, 963, 201, 1, 15, 133, 751, 2569, 4612, 3217, 423, 1, 17, 176, 1219, 5531, 15085, 20905, 10547, 880, 1, 19, 225, 1849, 10513, 39186, 86241, 92935, 34089, 1815
Offset: 2
For n = 3 and k = 4, there are 21 strings: {0000, 0001, 0002, 0010, 0011, 0012, 0020, 0021, 0022, 0100, 0200, 1000, 1001, 1002, 1100, 1200, 2000, 2001, 2002, 2100, 2200}.
Square table T(n,k):
k=2: k=3: k=4: k=5: k=6: k=7:
n=2: 1 3 8 19 43 94
n=3: 1 5 21 79 281 963
n=4: 1 7 40 205 991 4612
n=5: 1 9 65 421 2569 15085
n=6: 1 11 96 751 5531 39186
n=7: 1 13 133 1219 10513 87199
n=8: 1 15 176 1849 18271 173608
n=9: 1 17 225 2665 29681 317817
-
m[r_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]];
T[n_, k_, r_] := MatrixPower[m[r], k][[1, r + 1]]*n^k;
Reverse[Table[T[n, k - n + 2, 2], {k, 2, 11}, {n, 2, k}], 2] // Flatten (* Robert P. P. McKone, Jan 26 2021 *)
A351530
The number of quinary strings of length n containing 00.
Original entry on oeis.org
0, 0, 1, 9, 65, 421, 2569, 15085, 86241, 483429, 2669305, 14564061, 78699089, 421880725, 2246459881, 11894065549, 62665617345, 328756309701, 1718275598809, 8951067087165, 46492068009521, 240846026714869, 1244719810538185, 6419100507215341
Offset: 0
-
CoefficientList[Series[x^2/((5*x - 1)*(4*x^2 + 4*x - 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 22 2022 *)
LinearRecurrence[{9,-16,-20},{0,0,1},30] (* Harvey P. Dale, Mar 26 2024 *)
A338230
Number of ternary strings of length n that contain at least two 0's and at most one 1.
Original entry on oeis.org
0, 0, 1, 7, 27, 81, 213, 519, 1207, 2725, 6033, 13179, 28515, 61257, 130861, 278287, 589551, 1244877, 2621097, 5504643, 11533915, 24116785, 50331141, 104857047, 218103207, 452984181, 939523393, 1946156299, 4026531027, 8321498265, 17179868253, 35433479199, 73014442975, 150323854237
Offset: 0
a(4) = 27 since the strings consist of 0000, the 4 permutations of 0001, the 4 permutations of 0002, the 6 permutations of 0022, and the 12 permutations of 0012. The total number of strings is then 1 + 4 + 4 + 6 + 12 = 27.
-
CoefficientList[Series[Exp[x](Exp[x]-1-x)(1+x),{x,0,32}],x]Table[i!,{i,0,32}] (* Stefano Spezia, Jan 31 2021 *)
A341050
Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2
For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000}
The first seven slices of the tetrahedron (or pyramid) are:
-----------------Slice 1-----------------
1
-----------------Slice 2-----------------
1
1 3
-----------------Slice 3-----------------
1
1 3
1 5 8
-----------------Slice 4-----------------
1
1 3
1 5 8
1 7 21 19
-----------------Slice 5-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 43
-----------------Slice 6-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 47
1 11 65 208 295 94
-----------------Slice 7-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 48
1 11 65 208 297 107
1 13 96 425 1024 1037 201
Cf.
A005408,
A003215,
A005917,
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528,
A022529,
A022530,
A022531,
A022532,
A022533,
A022534,
A022535,
A022536,
A022537,
A022538,
A022539,
A022540 (k=x, r=1, where x is the x-th Nexus Number).
Cf.
A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf.
A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].
-
m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten
A351529
The number of quaternary strings of length n containing 00.
Original entry on oeis.org
0, 0, 1, 7, 40, 205, 991, 4612, 20905, 92935, 407056, 1762117, 7556095, 32148940, 135892321, 571232647, 2389810360, 9956870845, 41335010911, 171055514452, 705891052825, 2905717608775, 11934337612576, 48918212175157, 200149835407615, 817572886925980
Offset: 0
-
LinearRecurrence[{7,-9,-12},{0,0,1},30] (* Harvey P. Dale, Feb 27 2023 *)
A309000
Number of strings of length n from a 3-symbol alphabet (A,B,C, say) containing at least one "A" and at least two "B"s.
Original entry on oeis.org
3, 22, 105, 416, 1491, 5034, 16365, 51892, 161799, 498686, 1524705, 4635528, 14037627, 42391378, 127763925, 384536924, 1156232175, 3474201510, 10434138825, 31326533680, 94029932643, 282194655482, 846802070205, 2540859195396, 7623517110231, 22872497487694
Offset: 3
Suppose three-sided dice each have sides labeled A,B,C.
If there are three dice, then ABB, BAB, and BBA are the three strings resulting from rolling the dice satisfying the property of at least one A and at least two B's, hence a(3)=3 [Note a(0)=a(1)=a(2)=0].
If there are four such dice, there are 22 such permutations, hence a(4)=22: AABB, ABAB, ABBA, ABBB, ABBC, ABCB, ACBB, BAAB, BABA, BABB, BABC, BACB, BBAA, BBAB, BBAC, BBBA, BBCA, BCAB, BCBA, CABB, CBAB, CBBA.
-
[3^n-2^(n+1)-n*2^(n-1)+n+1: n in [3..40]]; // Vincenzo Librandi, Jul 05 2019
-
Array[3^# - 2^(# + 1) - # 2^(# - 1) + # + 1 &, 27, 3] (* or *)
CoefficientList[Series[(-3 + 5 x)/((-1 + 3 x) (1 - 3 x + 2 x^2)^2), {x, 0, 26}], x] (* Michael De Vlieger, Jul 04 2019 *)
-
[3**n-2**(n+1)-n*2**(n-1)+n+1 for n in range(3,20)]
Showing 1-10 of 10 results.
Comments