cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A007360 Number of partitions of n into distinct and pairwise relatively prime parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 8, 9, 10, 11, 10, 13, 17, 19, 21, 22, 21, 24, 32, 37, 37, 38, 40, 45, 55, 65, 69, 66, 64, 75, 86, 100, 113, 107, 106, 122, 145, 165, 174, 167, 162, 179, 222, 253, 255, 255, 255, 273, 328, 373, 376, 369, 377, 406, 476, 553, 569, 537, 529
Offset: 1

Views

Author

N. J. A. Sloane and Mira Bernstein, following a suggestion from Marc LeBrun

Keywords

Examples

			From _Gus Wiseman_, Sep 23 2019: (Start)
The a(1) = 1 through a(10) = 6 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)    (7)   (8)    (9)    (A)
            (21)  (31)  (32)  (51)   (43)  (53)   (54)   (73)
                        (41)  (321)  (52)  (71)   (72)   (91)
                                     (61)  (431)  (81)   (532)
                                           (521)  (531)  (541)
                                                         (721)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of partitions of n into relatively prime parts = A000837.
The non-strict case is A051424.
Strict relatively prime partitions are A078374.

Programs

  • Mathematica
    $RecursionLimit = 1000; b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i<2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, #Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[#]==1||UnsameQ@@#&&CoprimeQ@@Union[#]&]],{n,0,30}] (* Gus Wiseman, Sep 23 2019 *)

Formula

a(n) = A051424(n)-A051424(n-2). - Vladeta Jovovic, Dec 11 2004

Extensions

More precise definition from Vladeta Jovovic, Dec 11 2004
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 13 2005

A084422 Number of subsets of integers 1 through n (including the empty set) containing no pair of integers that share a common factor.

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 28, 56, 72, 104, 116, 232, 248, 496, 544, 616, 728, 1456, 1520, 3040, 3232, 3616, 3872, 7744, 8000, 11168, 11904, 14656, 15488, 30976, 31232, 62464, 69888, 76160, 80256, 89856, 91648, 183296, 192640, 208640, 214272, 428544
Offset: 0

Views

Author

Matthew Vandermast, Jun 26 2003

Keywords

Comments

Also the number of subsets of {1,...,n} whose product of elements is equal to the least common multiple of elements. - Michel Marcus, Mar 27 2016

Examples

			Exactly 4 of the 2^4=16 subsets of the integers from 1 through 4 contain a pair of integers that share a common factor; these are {2,4}, {1,2,4}, {2,3,4} and {1,2,3,4}. The other 12 subsets do not; hence a(4)=12.
		

References

  • Alan Sutcliffe, Divisors and Common Factors in Sets of Integers, awaiting publication. [Apparently unpublished as of 2016]

Crossrefs

Cf. A051026 gives the number of primitive subsets. A087080 gives the number of elements in coprime subsets. A087081 gives the sum of the elements in coprime subsets.

Programs

  • Mathematica
    Prepend[Table[Length@ Select[Rest@ Subsets@ Range@ n, Times @@ # == LCM @@ # &], {n, 22}] + 1, 1] (* Michael De Vlieger, Mar 27 2016 *)
  • PARI
    a(n)=nb = 0; S = vector(n, k, k); for (i = 0, 2^n - 1, ss = vecextract(S, i); if (prod(k=1, #ss, ss[k]) == lcm(ss), nb++);); nb; \\ Michel Marcus, Mar 27 2016
    
  • PARI
    a(n,k=1)=if(n<2, return(n+1)); if(gcd(k,n)==1, a(n-1,n*k)) + a(n-1,k) \\ Charles R Greathouse IV, Aug 24 2016

Formula

a(n) = 1 + Sum_{k=1..A036234(n)} A186974(n,k) if n>0; a(0) = 1.

Extensions

More terms from Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 12 2003

A015614 a(n) = -1 + Sum_{i=1..n} phi(i).

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 17, 21, 27, 31, 41, 45, 57, 63, 71, 79, 95, 101, 119, 127, 139, 149, 171, 179, 199, 211, 229, 241, 269, 277, 307, 323, 343, 359, 383, 395, 431, 449, 473, 489, 529, 541, 583, 603, 627, 649, 695, 711, 753, 773, 805, 829, 881, 899, 939, 963
Offset: 1

Views

Author

Keywords

Comments

Number of elements in the set {(x,y): 1 <= x < y <= n, 1=gcd(x,y)}. - Michael Somos, Jun 13 1999
Number of fractions in (Haros)-Farey series of order n.
The asymptotic limit for the sequence is a(n) ~ 3*n^2/Pi^2. - Martin Renner, Dec 12 2011
2*a(n) is the number of proper fractions reduced to lowest terms with numerator and denominator less than or equal to n in absolute value. - Stefano Spezia, Aug 09 2019

Examples

			x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 11*x^6 + 17*x^7 + 21*x^8 +27*x^9 + ...
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, pp. 170-171.

Crossrefs

Column k=2 of triangle A186974.

Programs

  • GAP
    List([1..60],n->Sum([1..n],i->Phi(i)))-1; # Muniru A Asiru, Jul 31 2018
    
  • Haskell
    a015614 = (subtract 1) . a002088  -- Reinhard Zumkeller, Jul 29 2012
    
  • Magma
    [-1+&+[EulerPhi(i): i in [1..n]]:n in [1..56]]; // Marius A. Burtea, Aug 09 2019
    
  • Maple
    with(numtheory): a:=n->add(phi(i),i=1..n): seq(a(n)-1,n=1..60); # Muniru A Asiru, Jul 31 2018
  • Mathematica
    Table[Sum[EulerPhi[m],{m,1,n}]-1,{n,1,56}] (* Geoffrey Critzer, May 16 2014 *)
    Table[Length[FareySequence[n]]-2,{n,60}] (* Harvey P. Dale, Jan 30 2025 *)
  • PARI
    {a(n) = if( n<1, 0, sum(k=1,n,eulerphi(k), -1))} /* Michael Somos, Sep 06 2013 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A015614(n): # based on second formula in A018805
        if n == 0:
            return -1
        c, j = 2, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(2*A015614(k1)+1)
            j, k1 = j2, n//j2
        return (n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 24 2021

Formula

a(n) = -1 + A002088(n).
a(n) = (A018805(n) - 1)/2. - Reinhard Zumkeller, Apr 08 2006
For n > 1: A214803(a(n)) = A165900(n-1). - Reinhard Zumkeller, Jul 29 2012
a(n) = A018805(n) - A002088(n). - Reinhard Zumkeller, Jan 21 2013
G.f.: (1/(1 - x)) * (-x + Sum_{k>=1} mu(k) * x^k / (1 - x^k)^2). - Ilya Gutkovskiy, Feb 14 2020
a(n) = A000217(n-1) - A185670(n). - Hossein Mahmoodi, Jan 20 2022

Extensions

More terms from Reinhard Zumkeller, Apr 08 2006

A187106 Number of nonempty subsets of {1, 2, ..., n} having pairwise coprime elements.

Original entry on oeis.org

1, 3, 7, 11, 23, 27, 55, 71, 103, 115, 231, 247, 495, 543, 615, 727, 1455, 1519, 3039, 3231, 3615, 3871, 7743, 7999, 11167, 11903, 14655, 15487, 30975, 31231, 62463, 69887, 76159, 80255, 89855, 91647, 183295, 192639, 208639, 214271, 428543
Offset: 1

Views

Author

Alois P. Heinz, Mar 06 2011

Keywords

Examples

			a(4) = 11 because there are 11 nonempty subsets of {1,2,3,4} having pairwise coprime elements: {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {3,4}, {1,2,3}, {1,3,4}.
		

Crossrefs

Cf. A036234. Row sums of triangle A186974. Partial sums of A186973. Rightmost elements in rows of triangle A187262.
Cf. A084422.

Programs

  • PARI
    f(n,k=1)=if(n==1, return(2)); if(gcd(k,n)==1, f(n-1,n*k)) + f(n-1,k)
    a(n)=f(n)-1 \\ Charles R Greathouse IV, Aug 24 2016

Formula

a(n) = Sum_{k=1..A036234(n)} A186974(n,k).
a(n) = Sum_{i=1..n} A186973(i).
a(n) = A187262(n,A036234(n)).
a(n) = A084422(n) - 1.

A187262 Irregular triangle T(n,k), n>=1, 1<=k<=A036234(n), read by rows: T(n,k) is the number of nonempty subsets of {1, 2, ..., n} having <=k pairwise coprime elements.

Original entry on oeis.org

1, 2, 3, 3, 6, 7, 4, 9, 11, 5, 14, 21, 23, 6, 17, 25, 27, 7, 24, 43, 53, 55, 8, 29, 54, 68, 71, 9, 36, 73, 97, 103, 10, 41, 83, 109, 115, 11, 52, 125, 193, 225, 231, 12, 57, 136, 208, 241, 247, 13, 70, 194, 345, 450, 489, 495, 14, 77, 215, 382, 496, 537, 543
Offset: 1

Views

Author

Alois P. Heinz, Mar 07 2011

Keywords

Comments

T(n,k) = T(n,k-1) for k>A036234(n). The triangle contains all values of T up to the last element of each row that is different from its predecessor.

Examples

			T(5,3) = 21 because there are 21 nonempty subsets of {1,2,3,4,5} having <=3 pairwise coprime elements: {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,5}, {3,4}, {3,5}, {4,5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,5}, {3,4,5}.
Irregular Triangle T(n,k) begins:
  1;
  2,  3;
  3,  6,  7;
  4,  9, 11;
  5, 14, 21, 23;
  6, 17, 25, 27;
  7, 24, 43, 53, 55;
		

Crossrefs

Rightmost elements of rows give A187106.

Formula

T(n,k) = Sum_{i=1..n,j=1..k} A186972(i,j).
T(n,k) = Sum_{j=1..k} A186974(n,j).
T(n,k) = Sum_{i=1..n} A186975(i,k).

A276187 Number of subsets of {1,..,n} of cardinality >= 2 such that the elements of each counted subset are pairwise coprime.

Original entry on oeis.org

0, 1, 4, 7, 18, 21, 48, 63, 94, 105, 220, 235, 482, 529, 600, 711, 1438, 1501, 3020, 3211, 3594, 3849, 7720, 7975, 11142, 11877, 14628, 15459, 30946, 31201, 62432, 69855, 76126, 80221, 89820, 91611, 183258, 192601, 208600, 214231, 428502, 431573, 863188, 900563
Offset: 1

Views

Author

Robert C. Lyons, Aug 23 2016

Keywords

Comments

n is prime if and only if a(n) = 2*a(n-1)+n-1. - Robert Israel, Aug 24 2016

Examples

			From _Gus Wiseman_, May 08 2021: (Start)
The a(2) = 1 through a(6) = 21 sets:
  {1,2}   {1,2}    {1,2}     {1,2}      {1,2}
          {1,3}    {1,3}     {1,3}      {1,3}
          {2,3}    {1,4}     {1,4}      {1,4}
         {1,2,3}   {2,3}     {1,5}      {1,5}
                   {3,4}     {2,3}      {1,6}
                  {1,2,3}    {2,5}      {2,3}
                  {1,3,4}    {3,4}      {2,5}
                             {3,5}      {3,4}
                             {4,5}      {3,5}
                            {1,2,3}     {4,5}
                            {1,2,5}     {5,6}
                            {1,3,4}    {1,2,3}
                            {1,3,5}    {1,2,5}
                            {1,4,5}    {1,3,4}
                            {2,3,5}    {1,3,5}
                            {3,4,5}    {1,4,5}
                           {1,2,3,5}   {1,5,6}
                           {1,3,4,5}   {2,3,5}
                                       {3,4,5}
                                      {1,2,3,5}
                                      {1,3,4,5}
(End)
		

Crossrefs

The case of pairs is A015614.
The indivisible instead of coprime version is A051026(n) - n.
Allowing empty sets and singletons gives A084422.
The relatively prime instead of pairwise coprime version is A085945(n) - 1.
Allowing all singletons gives A187106.
Allowing only the singleton {1} gives A320426.
Row sums of A320436, each minus one.
The maximal case is counted by A343659.
The version for sets of divisors is A343655(n) - 1.
A000005 counts divisors.
A186972 counts pairwise coprime k-sets containing n.
A186974 counts pairwise coprime k-sets.
A326675 ranks pairwise coprime non-singleton sets.

Programs

  • Maple
    f:= proc(S) option remember;
        local s, Sp;
        if S = {} then return 1 fi;
        s:= S[-1];
        Sp:= S[1..-2];
        procname(Sp) + procname(select(t -> igcd(t,s)=1, Sp))
    end proc:
    seq(f({$1..n}) - n - 1, n=1..50); # Robert Israel, Aug 24 2016
  • Mathematica
    f[S_] := f[S] = Module[{s, Sp}, If[S == {}, Return[1]]; s = S[[-1]]; Sp = S[[1;;-2]]; f[Sp] + f[Select[Sp, GCD[#, s] == 1&]]];
    Table[f[Range[n]] - n - 1, {n, 1, 50}] (* Jean-François Alcover, Sep 15 2022, after Robert Israel *)
  • PARI
    f(n,k=1)=if(n==1, return(2)); if(gcd(k,n)==1, f(n-1,n*k)) + f(n-1,k)
    a(n)=f(n)-n-1 \\ Charles R Greathouse IV, Aug 24 2016
  • Sage
    from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets
    def is_coprime(x, y): return gcd(x, y) == 1
    max_n = 40
    seq = []
    for n in range(1, max_n+1):
        P = PairwiseCompatibleSubsets(range(1,n+1), is_coprime)
        a_n = len([1 for s in P.list() if len(s) > 1])
        seq.append(a_n)
    print(seq)
    

Formula

a(n) = A320426(n) - 1. - Gus Wiseman, May 08 2021

Extensions

Name and example edited by Robert Israel, Aug 24 2016

A320423 Number of set partitions of {1,...,n} where each block's elements are pairwise coprime.

Original entry on oeis.org

1, 1, 1, 2, 2, 8, 4, 28, 18, 120, 60, 888, 252, 5220, 1860, 22224, 9552, 311088, 59616, 2473056, 565920, 13627008, 4051872, 235039392, 33805440, 1932037632, 465239808, 20604487680, 4294865664, 386228795904, 35413136640
Offset: 0

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Comments

Two or more numbers are pairwise coprime if no pair of them has a common divisor > 1. A single number is not considered to be pairwise coprime unless it is equal to 1.

Examples

			The a(5) = 8 set partitions:
  {{1},{2,3},{4,5}}
  {{1},{2,5},{3,4}}
   {{1,2},{3,4,5}}
   {{1,4},{2,3,5}}
   {{1,2,3},{4,5}}
   {{1,2,5},{3,4}}
   {{1,3,4},{2,5}}
   {{1,4,5},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[Select[Subsets[Range[n]],CoprimeQ@@#&],Range[n]]],{n,10}]

Extensions

a(17)-a(18) from Alois P. Heinz, Jan 17 2019
a(19)-a(30) from Christian Sievers, Nov 28 2024

A015617 Number of (unordered) triples of integers from [1,n] with no common factors between pairs.

Original entry on oeis.org

0, 0, 1, 2, 7, 8, 19, 25, 37, 42, 73, 79, 124, 138, 159, 183, 262, 277, 378, 405, 454, 491, 640, 668, 794, 850, 959, 1016, 1257, 1285, 1562, 1668, 1805, 1905, 2088, 2150, 2545, 2673, 2866, 2968, 3457, 3522, 4063, 4228, 4431, 4620, 5269, 5385, 5936
Offset: 1

Views

Author

Keywords

Comments

Form the graph with nodes 1..n, joining two nodes by an edge if they are relatively prime; a(n) = number of triangles in this graph. - N. J. A. Sloane, Feb 06 2011. The number of edges in this graph is A015614. - Roberto Bosch Cabrera, Feb 07 2011.

Examples

			For n=5, there are a(5)=7 triples: (1,2,3), (1,2,5), (1,3,4), (1,3,5), (1,4,5), (2,3,5) and (3,4,5) out of binomial(5,3) = 10 triples of distinct integers <= 5.
		

Crossrefs

Subset of A015616 (triples with no common factor) and A015631 (ordered triples with no common factor).
Cf. A185953 (first differences), A186230, Column 3 of triangle A186974.

Programs

  • Mathematica
    a[n_] := Select[Subsets[Range[n], {3}], And @@ (GCD @@ # == 1 & /@ Subsets[#, {2}]) &] // Length; a /@ Range[49]
    (* Jean-François Alcover, Jul 11 2011 *)
  • PARI
    a(n)=sum(a=1,n-2,sum(b=a+1,n-1,sum(c=b+1,n, gcd(a,b)==1 && gcd(a,c)==1 && gcd(b,c)==1))) \\ Charles R Greathouse IV, Apr 28 2015

Formula

For large n one can show that a(n) ~ C*binomial(n,3), where C = 0.28674... = A065473. - N. J. A. Sloane, Feb 06 2011.
a(n) = Sum_{r=1..n} Sum_{k=1..r} A186230(r,k). - Alois P. Heinz, Feb 17 2011

Extensions

Added one example and 2 cross-references. - Olivier Gérard, Feb 06 2011.

A320430 Number of set partitions of [n] where the elements of each non-singleton block are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 5, 10, 37, 60, 295, 658, 2621, 5368, 38535, 66506, 551529, 1234264, 5004697, 13721836, 143935131, 256835337, 2971237021, 6485081140, 35162930303, 95872321543, 1315397878401, 2399236456202, 25866803180347, 72374386475590, 563368417647305, 1479943119911866
Offset: 0

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Comments

Two or more numbers are pairwise coprime if no pair of them has a common divisor > 1.

Examples

			The a(4) = 10 set partitions: 1|2|3|4, 14|2|3, 13|2|4, 12|3|4, 1|23|4, 1|2|34, 134|2, 123|4, 14|23, 12|34.
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[Select[Subsets[Range[n]],Length[#]==1||CoprimeQ@@#&],Range[n]]],{n,10}]

Extensions

a(14)-a(15) from Alois P. Heinz, Jan 08 2019
a(16) from Alois P. Heinz, Mar 26 2020
a(17)-a(24) from Giovanni Resta, Mar 27 2020
a(25)-a(28) from Alois P. Heinz, Aug 03 2023

A320436 Irregular triangle read by rows where T(n,k) is the number of pairwise coprime k-subsets of {1,...,n}, 1 <= k <= A036234(n), where a single number is not considered to be pairwise coprime unless it is equal to 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 9, 7, 2, 1, 11, 8, 2, 1, 17, 19, 10, 2, 1, 21, 25, 14, 3, 1, 27, 37, 24, 6, 1, 31, 42, 26, 6, 1, 41, 73, 68, 32, 6, 1, 45, 79, 72, 33, 6, 1, 57, 124, 151, 105, 39, 6, 1, 63, 138, 167, 114, 41, 6, 1, 71, 159, 192, 128, 44, 6, 1, 79
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   3   1
   1   5   2
   1   9   7   2
   1  11   8   2
   1  17  19  10   2
   1  21  25  14   3
   1  27  37  24   6
   1  31  42  26   6
   1  41  73  68  32   6
   1  45  79  72  33   6
   1  57 124 151 105  39   6
   1  63 138 167 114  41   6
   1  71 159 192 128  44   6
   1  79 183 228 157  56   8
		

Crossrefs

Except for the k = 1 column, same as A186974.
Row sums are A320426.
Second column is A015614.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{k}],CoprimeQ@@#&]],{n,16},{k,PrimePi[n]+1}]
Showing 1-10 of 20 results. Next