cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A002088 Sum of totient function: a(n) = Sum_{k=1..n} phi(k), cf. A000010.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 12, 18, 22, 28, 32, 42, 46, 58, 64, 72, 80, 96, 102, 120, 128, 140, 150, 172, 180, 200, 212, 230, 242, 270, 278, 308, 324, 344, 360, 384, 396, 432, 450, 474, 490, 530, 542, 584, 604, 628, 650, 696, 712, 754, 774, 806, 830, 882, 900, 940, 964
Offset: 0

Views

Author

Keywords

Comments

Number of elements in the set {(x,y): 1 <= x <= y <= n, 1=gcd(x,y)}. - Michael Somos, Jun 13 1999
Sum_{k=1..n} phi(k) gives the number of distinct arithmetic progressions which contain an infinite number of primes and whose difference does not exceed n. E.g., {1k+1}, {2k+1}, {3k+1, 3k+2}, {4k+1, 4k+3}, {5k+1, ..5k+4} means 10 sequences. - Labos Elemer, May 02 2001
The quotient A024916(n)/a(n) = SummatorySigma/SummatoryTotient as n increases seems to approach Pi^4/36 = zeta(2)^2 = A098198 ~2.705808084277845. - Labos Elemer, Sep 20 2004 (corrected by Peter Pein, Apr 28 2009)
Also the number of rationals p/q in (0,1] with denominators q<=n. - Franz Vrabec, Jan 29 2005
a(n) is the number of initial segments of Beatty sequences for real numbers > 1, cut off when the next term in the sequence would be >= n. For example, the sequence 1,2 is included for n=3 and n=4, but not for n >= 5 because the next term of the Beatty sequence must be 3 or 4. Problem suggested by David W. Wilson. - Franklin T. Adams-Watters, Oct 19 2006
Number of complex numbers satisfying any one of {x^1=1, x^2=1, x^3=1, x^4=1, x^5=1, ..., x^n=1}. - Paul Smith (math.idiot(AT)gmail.com), Mar 19 2007
a(n+2) equals the number of Sturmian words of length n which are 'special', prefix of two Sturmian words of length n+1. - Fred Lunnon, Sep 05 2010
For n > 1: A020652(a(n)) = 1 and A038567(a(n)) = n; for n > 0: A214803(a(n)) = 1. - Reinhard Zumkeller, Jul 29 2012
Also number of elements in the set {(x,y): 1 <= x + y <= n, x >= 0, y > 0, with x and y relatively prime integers}. Thus, the number of reduced rational numbers x/y with x nonnegative, y positive, and x + y <= n. (For n >= 1, 0 <= x/y <= n - 1, clearly including each integer in this interval.) - Rick L. Shepherd, Apr 08 2014
This function, the partial sums of phi = A000010, is sometimes denoted by (uppercase) Phi. - M. F. Hasler, Apr 18 2015
From Roger Ford, Jan 16 2016: (Start)
For n >= 1: a(n) is the number of perfect arched semi-meander solutions with n arches. To be perfect the number of arch groupings must equal the number of arches with a length of 1 in the current generation and every preceding generation.
Example: p is the number of arches with length 1 (/\), g is the number of arch groups (-), n is number of arches in the top half of a semi-meander solution
/\
/\ //\\
//\\-/\-///\\\- n=6 p=3 g=3 Each preceding arch configuration
/\ /\ is formed by attaching the arch
/\-//\\-//\\- n=5 p=3 g=3 end in the first position and the
/\ arch end in the last position.
//\\
///\\\-/\- n=4 p=2 g=2
/\
//\\-/\- n=3 p=2 g=2
/\-/\- n=2 p=2 g=2
/\- n=1 p=1 g=1. (End)
a(n) is the number of distinct lists of binary words of length n that are balanced (Sturmian). - Dan Rockwell, Will Wodrich, Aaliyah Fiala, and Bob Burton, May 30 2019
2013 IMO Problem 6 shows that a(n) is the number of ways to arrange the numbers 0, 1, ..., n on a circle such that for any numbers 0 <= a < b < c < d <= n, the chord joining a and d does not intersect with the chord intersecting b and c, with rotation counted as same. - Yifan Xie, Aug 26 2025

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 12*x^6 + 18*x^7 + 22*x^8 + 28*x^9 + ...
		

References

  • A. Beiler, Recreations in the Theory of Numbers, Dover Publications, 1966, Chap. XVI.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 138.
  • M. N. Huxley, The Distribution of Prime Numbers, Oxford Univ. Press, 1972, p. 6.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section I.21.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 94, Problem 11.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 111.

Crossrefs

Programs

  • GAP
    List([1..60],n->Sum([1..n],i->Phi(i))); # Muniru A Asiru, Jul 31 2018
    
  • Haskell
    a002088 n = a002088_list !! n
    a002088_list = scanl (+) 0 a000010_list -- Reinhard Zumkeller, Jul 29 2012
    
  • Magma
    [&+[EulerPhi(i): i in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Aug 01 2018
    
  • Maple
    with(numtheory): A002088:=n->add(phi(i),i=1..n): seq(A002088(n), n=0..70);
  • Mathematica
    Table[Plus @@ EulerPhi[Range[n]], {n, 0, 57}] (* Alonso del Arte, May 30 2006 *)
    Accumulate[EulerPhi[Range[0,60]]] (* Harvey P. Dale, Aug 27 2011 *)
  • PARI
    a(n)=sum(k=1,n,eulerphi(k)) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    a(n)=my(s=1); forsquarefree(k=1,n,s+=(n\k[1])^2*moebius(k)); s/2 \\ Charles R Greathouse IV, Oct 15 2021
    
  • PARI
    first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]]=s+=eulerphi(k)); v \\ Charles R Greathouse IV, Oct 15 2021
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A002088(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(2*A002088(k1)-1)
            j, k1 = j2, n//j2
        return (n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 24 2021
  • Sage
    [sum(euler_phi(k) for k in (1..n)) for n in (0..60)] # G. C. Greubel, Nov 25 2018
    

Formula

a(n) = (3*n^2)/(Pi^2) + O(n log n).
More precisely, a(n) = (3/Pi^2)*n^2 + O(n*(log(n))^(2/3)*(log(log(n)))^(4/3)), (A. Walfisz 1963). - Benoit Cloitre, Feb 02 2003
a(n) = (1/2)*Sum_{k>=1} mu(k)*floor(n/k)*floor(1+n/k). - Benoit Cloitre, Apr 11 2003
a(n) = A000217(n) - A063985(n) = A018805(n) - A015614(n). - Reinhard Zumkeller, Jan 21 2013
A slightly simpler version of Cloitre's formula is a(n) = 1/2 + Sum_{k=1..oo} floor(n/k)^2*mu(k)/2. - Bill Gosper, Jul 25 2020
The quotient A024916(n)/a(n) = SummatorySigma/SummatoryTotient as n increases seems to approach (Pi^4)/36 = Zeta(2)^2 = 2.705808084277845. See also A067282. - Labos Elemer, Sep 21 2004
A024916(n)/a(n) = zeta(2)^2 + O(log(n)/n). This follows from asymptotic formulas for the sequences. - Franklin T. Adams-Watters, Oct 19 2006
Row sums of triangle A134542. - Gary W. Adamson, Oct 31 2007
G.f.: (Sum_{n>=1} mu(n)*x^n/(1-x^n)^2)/(1-x), where mu(n) = A008683(n). - Mamuka Jibladze, Apr 06 2015
a(n) = A005728(n) - 1, for n >= 0. - Wolfdieter Lang, Nov 22 2016
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (M(floor(n/k)) - M(floor(n/(k+1)))) + Sum_{k=1..floor(n/(1+floor(sqrt(n))))} mu(k) * floor(n/k) * floor(1+n/k))/2, where M(k) is the Mertens function (A002321) and mu(k) is the Moebius function (A008683). - Daniel Suteu, Nov 23 2018
a(n) = A015614(n)+1. - R. J. Mathar, Apr 26 2023
a(n) = A000217(n) - Sum{k=2..n} a(floor(n/k)). From summing over Id = 1 (Dirichlet convolution) phi. - Jason Xu, Jul 31 2024
a(n) = Sum_{k=1..n} k*A002321(floor(n/k)). - Ridouane Oudra, Jul 03 2025

Extensions

Additional comments from Len Smiley

A048691 a(n) = d(n^2), where d(k) = A000005(k) is the number of divisors of k.

Original entry on oeis.org

1, 3, 3, 5, 3, 9, 3, 7, 5, 9, 3, 15, 3, 9, 9, 9, 3, 15, 3, 15, 9, 9, 3, 21, 5, 9, 7, 15, 3, 27, 3, 11, 9, 9, 9, 25, 3, 9, 9, 21, 3, 27, 3, 15, 15, 9, 3, 27, 5, 15, 9, 15, 3, 21, 9, 21, 9, 9, 3, 45, 3, 9, 15, 13, 9, 27, 3, 15, 9, 27, 3, 35, 3, 9, 15, 15, 9, 27, 3, 27
Offset: 1

Views

Author

Keywords

Comments

Inverse Moebius transform of A034444: Sum_{d|n} 2^omega(d), where omega(n) = A001221(n) is the number of distinct primes dividing n.
Number of elements in the set {(x,y): x|n, y|n, gcd(x,y)=1}.
Number of elements in the set {(x,y): lcm(x,y)=n}.
Also gives total number of positive integral solutions (x,y), order being taken into account, to the optical or parallel resistor equation 1/x + 1/y = 1/n. Indeed, writing the latter as X*Y=N, with X=x-n, Y=y-n, N=n^2, the one-to-one correspondence between solutions (X, Y) and (x, y) is obvious, so that clearly, the solution pairs (x, y) are tau(N)=tau(n^2) in number. - Lekraj Beedassy, May 31 2002
Number of ordered pairs of positive integers (a,c) such that n^2 - ac = 0. Therefore number of quadratic equations of the form ax^2 + 2nx + c = 0 where a,n,c are positive integers and each equation has two equal (rational) roots, -n/a. (If a and c are positive integers, but, instead, the coefficient of x is odd, it is impossible for the equation to have equal roots.) - Rick L. Shepherd, Jun 19 2005
Problem A1 on the 21st Putnam competition in 1960 (see John Scholes link) asked for the number of pairs of positive integers (x,y) such that xy/(x+y) = n: the answer is a(n); for n = 4, the a(4) = 5 solutions (x,y) are (5,20), (6,12), (8,8), (12,6), (20,5). - Bernard Schott, Feb 12 2023
Numbers k such that a(k)/d(k) is an integer are in A217584 and the corresponding quotients are in A339055. - Bernard Schott, Feb 15 2023

References

  • A. M. Gleason et al., The William Lowell Putnam Mathematical Competitions, Problems & Solutions:1938-1960 Soln. to Prob. 1 1960, p. 516, MAA, 1980.
  • Ross Honsberger, More Mathematical Morsels, Morsel 43, pp. 232-3, DMA No. 10 MAA, 1991.
  • Loren C. Larson, Problem-Solving Through Problems, Prob. 3.3.7, p. 102, Springer 1983.
  • Alfred S. Posamentier and Charles T. Salkind, Challenging Problems in Algebra, Prob. 9-9 pp. 143 Dover NY, 1988.
  • D. O. Shklarsky et al., The USSR Olympiad Problem Book, Soln. to Prob. 123, pp. 28, 217-8, Dover NY.
  • Wacław Sierpiński, Elementary Theory of Numbers, pp. 71-2, Elsevier, North Holland, 1988.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.
  • Charles W. Trigg, Mathematical Quickies, Question 194, pp. 53, 168, Dover, 1985.

Crossrefs

Partial sums give A061503.
For similar LCM sequences, see A070919, A070920, A070921.
For the earliest occurrence of 2n-1 see A016017.

Programs

Formula

a(n) = A000005(A000290(n)).
tau(n^2) = Sum_{d|n} mu(n/d)*tau(d)^2, where mu(n) = A008683(n), cf. A061391.
Multiplicative with a(p^e) = 2e+1. - Vladeta Jovovic, Jul 23 2001
Also a(n) = Sum_{d|n} (tau(d)*moebius(n/d)^2), Dirichlet convolution of A000005 and A008966. - Benoit Cloitre, Sep 08 2002
a(n) = A055205(n) + A000005(n). - Reinhard Zumkeller, Dec 08 2009
Dirichlet g.f.: (zeta(s))^3/zeta(2s). - R. J. Mathar, Feb 11 2011
a(n) = Sum_{d|n} 2^omega(d). Inverse Mobius transform of A034444. - Enrique Pérez Herrero, Apr 14 2012
G.f.: Sum_{k>=1} 2^omega(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 10 2018
Sum_{k=1..n} a(k) ~ n*(6/Pi^2)*(log(n)^2/2 + log(n)*(3*gamma - 1) + 1 - 3*gamma + 3*gamma^2 - 3*gamma_1 + (2 - 6*gamma - 2*log(n))*zeta'(2)/zeta(2) + (2*zeta'(2)/zeta(2))^2 - 2*zeta''(2)/zeta(2)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Jan 26 2023

Extensions

Additional comments from Vladeta Jovovic, Apr 29 2001

A018805 Number of elements in the set {(x,y): 1 <= x,y <= n, gcd(x,y)=1}.

Original entry on oeis.org

1, 3, 7, 11, 19, 23, 35, 43, 55, 63, 83, 91, 115, 127, 143, 159, 191, 203, 239, 255, 279, 299, 343, 359, 399, 423, 459, 483, 539, 555, 615, 647, 687, 719, 767, 791, 863, 899, 947, 979, 1059, 1083, 1167, 1207, 1255, 1299, 1391, 1423, 1507, 1547, 1611, 1659, 1763
Offset: 1

Views

Author

Keywords

Comments

Number of positive rational numbers of height at most n, where the height of p/q is max(p, q) when p and q are relatively prime positive integers. - Charles R Greathouse IV, Jul 05 2012
The number of ordered pairs (i,j) with 1<=i<=n, 1<=j<=n, gcd(i,j)=d is a(floor(n/d)). - N. J. A. Sloane, Jul 29 2012
Equals partial sums of A140434 (1, 2, 4, 4, 8, 4, 12, 8, ...) and row sums of triangle A143469. - Gary W. Adamson, Aug 17 2008
Number of distinct solutions to k*x+h=0, where 1 <= k,h <= n. - Giovanni Resta, Jan 08 2013
a(n) is the number of rational numbers which can be constructed from the set of integers between 1 and n, without combination of multiplication and division. a(3) = 7 because {1, 2, 3} can only create {1/3, 1/2, 2/3, 1, 3/2, 2, 3}. - Bernard Schott, Jul 07 2019

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 110-112.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954. See Theorem 332.

Crossrefs

Cf. A177853 (partial sums).
The main diagonal of A331781, also of A333295.

Programs

  • Haskell
    a018805 n = length [()| x <- [1..n], y <- [1..n], gcd x y == 1]
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Magma
    /* based on the first formula */ A018805:=func< n | 2*&+[ EulerPhi(k): k in [1..n] ]-1 >; [ A018805(n): n in [1..60] ]; // Klaus Brockhaus, Jan 27 2011
    
  • Magma
    /* based on the second formula */ A018805:=func< n | n eq 1 select 1 else n^2-&+[ $$(n div j): j in [2..n] ] >; [ A018805(n): n in [1..60] ]; // Klaus Brockhaus, Feb 07 2011
    
  • Maple
    N:= 1000; # to get the first N entries
    P:= Array(1..N,numtheory:-phi);
    A:= map(t -> 2*round(t)-1, Statistics:-CumulativeSum(P));
    convert(A,list); # Robert Israel, Jul 16 2014
  • Mathematica
    FoldList[ Plus, 1, 2 Array[ EulerPhi, 60, 2 ] ] (* Olivier Gérard, Aug 15 1997 *)
    Accumulate[2*EulerPhi[Range[60]]]-1 (* Harvey P. Dale, Oct 21 2013 *)
  • PARI
    a(n)=sum(k=1,n,moebius(k)*(n\k)^2)
    
  • PARI
    A018805(n)=2 *sum(j=1, n, eulerphi(j)) - 1;
    for(n=1, 99, print1(A018805(n), ", ")); /* show terms */
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,n, s+=moebius(k)*(n\k[1])^2); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import sieve
    def A018805(n): return 2*sum(t for t in sieve.totientrange(1,n+1)) - 1 # Chai Wah Wu, Mar 23 2021
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A018805(n): # based on second formula
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A018805(k1)
            j, k1 = j2, n//j2
        return n*(n-1)-c+j # Chai Wah Wu, Mar 24 2021

Formula

a(n) = 2*(Sum_{j=1..n} phi(j)) - 1.
a(n) = n^2 - Sum_{j=2..n} a(floor(n/j)).
a(n) = 2*A015614(n) + 1. - Reinhard Zumkeller, Apr 08 2006
a(n) = 2*A002088(n) - 1. - Hugo van der Sanden, Nov 22 2008
a(n) ~ (1/zeta(2)) * n^2 = (6/Pi^2) * n^2 as n goes to infinity (zeta is the Riemann zeta function, A013661, and the constant 6/Pi^2 is 0.607927..., A059956). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 18 2001
a(n) ~ 6*n^2/Pi^2 + O(n*log n). - N. J. A. Sloane, May 31 2020
a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^2. - Benoit Cloitre, May 11 2003
a(n) = A000290(n) - A100613(n) = A015614(n) + A002088(n). - Reinhard Zumkeller, Jan 21 2013
a(n) = A242114(floor(n/k),1), 1<=k<=n; particularly a(n) = A242114(n,1). - Reinhard Zumkeller, May 04 2014
a(n) = 2 * A005728(n) - 3. - David H Post, Dec 20 2016
a(n) ~ 6*n^2/Pi^2, cf. A059956. [Hardy and Wright] - M. F. Hasler, Jan 20 2017
G.f.: (1/(1 - x)) * (-x + 2 * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^2). - Ilya Gutkovskiy, Feb 14 2020

Extensions

More terms from Reinhard Zumkeller, Apr 08 2006
Link to Moree's paper corrected by Peter Luschny, Aug 08 2009

A038567 Denominators in canonical bijection from positive integers to positive rationals <= 1.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16
Offset: 0

Views

Author

Keywords

Comments

n occurs phi(n) times (cf. A000010).
Least k such that phi(1) + phi(2) + phi(3) + ... + phi(k) >= n. - Benoit Cloitre, Sep 17 2002
Sum of numerator and denominator of fractions arranged by Cantor's ordering (1/1, 2/1, 1/2, 1/3, 3/1, 4/1, 3/2, 2/3, 1/4, 1/5, 5/1, 6/1, ...) with equivalent fractions removed. - Ron R. King, Mar 07 2009 [This applies to a(1, 2, ...) without initial term a(0) = 1 which could correspond to 0/1. - Editor's Note.]
Care has to be taken in considering the offset which may be 0 or 1 in related sequences (see crossrefs), e.g., A038568 & A038569 also have offset 0, in A038566 offset has been changed to 1. - M. F. Hasler, Oct 18 2021

Examples

			Arrange fractions by increasing denominator then by increasing numerator: 1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, ...: this is A038566/A038567.
		

References

  • S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
  • Hans Lauwerier, Fractals, Princeton University Press, 1991, p. 23.

Crossrefs

A054427 gives mapping to Stern-Brocot tree.
Cf. A037162.

Programs

  • Haskell
    import Data.List (genericTake)
    a038567 n = a038567_list !! n
    a038567_list = concatMap (\x -> genericTake (a000010 x) $ repeat x) [1..]
    -- Reinhard Zumkeller, Dec 16 2013, Jul 29 2012
    
  • Maple
    with (numtheory): A038567 := proc (n) local sum, k; sum := 1: k := 2: while (sum < n) do: sum := sum + phi(k): k := k + 1: od: RETURN (k-1): end: # Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    a[n_] := (k = 0; While[ Total[ EulerPhi[ Range[k]]] <= n, k++]; k); Table[ a[n], {n, 0, 77}] (* Jean-François Alcover, Dec 08 2011, after Pari *)
    Flatten[Table[Table[n,{EulerPhi[n]}],{n,20}]] (* Harvey P. Dale, Mar 12 2013 *)
  • PARI
    a(n)=if(n<0,0,s=1; while(sum(i=1,s,eulerphi(i))
    				
  • Python
    from sympy import totient
    def a(n):
        s=1
        while sum(totient(i) for i in range(1, s + 1))Indranil Ghosh, May 23 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A002088(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*((A002088(k1)<<1)-1)
            j, k1 = j2, n//j2
        return n*(n-1)-c+j>>1
    def A038567(n):
        kmin, kmax = 0, 1
        while A002088(kmax) <= n:
            kmax <<= 1
        kmin = kmax>>1
        while True:
            kmid = kmax+kmin>>1
            if A002088(kmid) > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Jun 10 2025

Formula

From Henry Bottomley, Dec 18 2000: (Start)
a(n) = A020652(n) + A020653(n) for all n > 0, e.g., a(1) = 2 = 1 + 1 = A020652(1) + A020653(1). [Corrected and edited by M. F. Hasler, Dec 10 2021]
n = a(A015614(n)) = a(A002088(n)) - 1 = a(A002088(n-1)). (End)
a(n) = A002024(A169581(n)). - Reinhard Zumkeller, Dec 02 2009
a(A002088(n)) = n for n > 1. - Reinhard Zumkeller, Jul 29 2012
a(n) = A071912(2*n+1). - Reinhard Zumkeller, Dec 16 2013
a(n) ~ c * sqrt(n), where c = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Dec 27 2024

Extensions

More terms from Erich Friedman

A165900 a(n) = n^2 - n - 1.

Original entry on oeis.org

-1, -1, 1, 5, 11, 19, 29, 41, 55, 71, 89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379, 419, 461, 505, 551, 599, 649, 701, 755, 811, 869, 929, 991, 1055, 1121, 1189, 1259, 1331, 1405, 1481, 1559, 1639, 1721, 1805, 1891, 1979, 2069, 2161, 2255
Offset: 0

Views

Author

Philippe Deléham, Sep 29 2009

Keywords

Comments

Previous name was: Values of Fibonacci polynomial n^2 - n - 1.
Shifted version of the array denoted rB(0,2) in A132382, whose e.g.f. is exp(x)(1-x)^2. Taking the derivative gives the e.g.f. of this sequence. - Tom Copeland, Dec 02 2013
The Fibonacci numbers are generated by the series x/(1 - x - x^2). - T. D. Noe, Dec 04 2013
Absolute value of expression f(k)*f(k+1) - f(k-1)*f(k+2) where f(1)=1, f(2)=n. Sign is alternately +1 and -1. - Carmine Suriano, Jan 28 2014 [Can anybody clarify what is meant here? - Joerg Arndt, Nov 24 2014]
Carmine's formula is a special case related to 4 consecutive terms of a Fibonacci sequence. A generalization of this formula is |a(n)| = |f(k+i)*f(k+j) - f(k)*f(k+i+j)|/F(i)*F(j), where f denotes a Fibonacci sequence with the initial values 1 and n, and F denotes the original Fibonacci sequence A000045. The same results can be obtained with the simpler formula |a(n)| = |f(k+1)^2 - f(k)^2 - f(k+1)*f(k)|. Everything said so far is also valid for Fibonacci sequences f with the initial values f(1) = n - 2, f(2) = 2*n - 3. - Klaus Purath, Jun 27 2022
a(n) is the total number of dollars won when using the Martingale method (bet $1, if win then continue to bet $1, if lose then double next bet) for n trials of a wager with exactly one loss, n-1 wins. For the case with exactly one win, n-1 losses, see A070313. - Max Winnick, Jun 28 2022
Numbers m such that 4*m+5 is a square b^2, where b = 2*n -1, for m = a(n). - Klaus Purath, Jul 23 2022

Examples

			G.f. = -1 - x + x^2 + 5*x^3 + 11*x^4 + 19*x^5 + 29*x^6 + 41*x^7 + ... - _Michael Somos_, Mar 23 2023
		

Crossrefs

A028387 and A110331 are very similar sequences.

Programs

Formula

a(n+2) = (n+1)*a(n+1) - (n+2)*a(n).
G.f.: (x^2+2*x-1)/(1-x)^3.
E.g.f.: exp(x)*(x^2-1).
a(n) = - A188652(2*n) for n > 0. - Reinhard Zumkeller, Apr 13 2011
a(n) = A214803(A015614(n+1)) for n > 0. - Reinhard Zumkeller, Jul 29 2012
a(n+1) = a(n) + A005843(n) = A002378(n) - 1. - Ivan N. Ianakiev, Feb 18 2013
a(n+2) = A028387(n). - Michael B. Porter, Sep 26 2018
From Klaus Purath, Aug 25 2022: (Start)
a(2*n) = n*(a(n+1) - a(n-1)) -1.
a(2*n+1) = (2*n+1)*(a(n+1) - a(n)) - 1.
a(n+2) = a(n) + 4*n + 2.
a(n) = A014206(n-1) - 3 = A002061(n-1) - 2.
a(n) = A028552(n-2) + 1 = A014209(n-2) + 2 = 2* A034856(n-2) + 3.
a(n) = A008865(n-1) + n = A005563(n-1) - n.
a(n) = A014209(n-3) + 2*n = A028387(n-1) - 2*n.
a(n) = A152015(n)/n, n != 0.
(a(n+k) - a(n-k))/(2*k) = 2*n-1, for any k.
(End)
For n > 1, 1/a(n) = Sum_{k>=1} F(k)/n^(k+1), where F(n) = A000045(n). - Diego Rattaggi, Nov 01 2022
a(n) = a(1-n) for all n in Z. - Michael Somos, Mar 23 2023
For n > 1, 1/a(n) = Sum_{k>=1} F(2k)/((n+1)^(k+1)), where F(2n) = A001906(n). - Diego Rattaggi, Jan 20 2025
From Amiram Eldar, May 11 2025: (Start)
Sum_{n>=1} 1/a(n) = tan(sqrt(5)*Pi/2)*Pi/sqrt(5).
Product_{n>=3} 1 - 1/a(n) = -sec(sqrt(5)*Pi/2)*Pi/6.
Product_{n>=2} 1 + 1/a(n) = -sec(sqrt(5)*Pi/2)*Pi. (End)

Extensions

a(22) corrected by Reinhard Zumkeller, Apr 13 2011
Better name from Joerg Arndt, Oct 26 2024

A186974 Irregular triangle T(n,k), n>=1, 1<=k<=A036234(n), read by rows: T(n,k) is the number of k-element subsets of {1, 2, ..., n} having pairwise coprime elements.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 5, 2, 5, 9, 7, 2, 6, 11, 8, 2, 7, 17, 19, 10, 2, 8, 21, 25, 14, 3, 9, 27, 37, 24, 6, 10, 31, 42, 26, 6, 11, 41, 73, 68, 32, 6, 12, 45, 79, 72, 33, 6, 13, 57, 124, 151, 105, 39, 6, 14, 63, 138, 167, 114, 41, 6, 15, 71, 159, 192, 128, 44, 6
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2011

Keywords

Comments

T(n,k) = 0 for k > A036234(n). The triangle contains all positive values of T.

Examples

			T(5,3) = 7 because there are 7 3-element subsets of {1,2,3,4,5} having pairwise coprime elements: {1,2,3}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,5}, {3,4,5}.
Irregular Triangle T(n,k) begins:
  1;
  2,  1;
  3,  3,  1;
  4,  5,  2;
  5,  9,  7,  2;
  6, 11,  8,  2;
  7, 17, 19, 10, 2;
		

Crossrefs

Row sums give A187106.
Rightmost terms of rows give A319187.

Programs

  • Maple
    with(numtheory):
    s:= proc(m, r) option remember; mul(`if`(i pi(n) +1:
    b:= proc(t, n, k) option remember; local c, d, h;
          if k=0 or k>n then 0
        elif k=1 then 1
        elif k=2 and t=n then `if`(n<2, 0, phi(n))
        else c:= 0;
             d:= 2-irem(t, 2);
             for h from 1 to n-1 by d do
               if igcd(t, h)=1 then c:= c +b(s(t*h, h), h, k-1) fi
             od; c
          fi
        end:
    T:= proc(n, k) option remember;
           b(s(n, n), n, k) +`if`(n<2, 0, T(n-1, k))
        end:
    seq(seq(T(n, k), k=1..a(n)), n=1..20);
  • Mathematica
    s[m_, r_] := s[m, r] = Product[If[i < r, i, 1], {i, FactorInteger[m][[All, 1]]}]; a[n_] := PrimePi[n]+1; b[t_, n_, k_] := b[t, n, k] = Module[{c, d, h}, Which[k == 0 || k > n, 0, k == 1, 1, k == 2 && t == n, If[n < 2, 0, EulerPhi[n]], True, c = 0; d = 2-Mod[t, 2]; For[h = 1, h <= n-1, h = h+d, If[ GCD[t, h] == 1, c = c + b[s[t*h, h], h, k-1]]]; c]]; t[n_, k_] := t[n, k] = b[s[n, n], n, k] + If[n < 2, 0, t[n-1, k]]; Table[Table[t[n, k], { k, 1, a[n]}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

Formula

T(n,k) = Sum_{i=1..n} A186972(i,k).

A320426 Number of nonempty pairwise coprime subsets of {1,...,n}, where a single number is not considered to be pairwise coprime unless it is equal to 1.

Original entry on oeis.org

1, 2, 5, 8, 19, 22, 49, 64, 95, 106, 221, 236, 483, 530, 601, 712, 1439, 1502, 3021, 3212, 3595, 3850, 7721, 7976, 11143, 11878, 14629, 15460, 30947, 31202, 62433, 69856, 76127, 80222, 89821, 91612, 183259, 192602, 208601, 214232, 428503, 431574, 863189
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Comments

Two or more numbers are pairwise coprime if no pair of them has a common divisor > 1.

Examples

			The a(4) = 8 subsets of {1,2,3,4} are {1}, {1,2}, {1,3}, {1,4}, {2,3}, {3,4}, {1,2,3}, {1,3,4}. - _Michael B. Porter_, Jan 12 2019
From _Gus Wiseman_, May 09 2021: (Start)
The a(2) = 2 through a(6) = 22 sets:
   {1}     {1}      {1}       {1}        {1}
  {1,2}   {1,2}    {1,2}     {1,2}      {1,2}
          {1,3}    {1,3}     {1,3}      {1,3}
          {2,3}    {1,4}     {1,4}      {1,4}
         {1,2,3}   {2,3}     {1,5}      {1,5}
                   {3,4}     {2,3}      {1,6}
                  {1,2,3}    {2,5}      {2,3}
                  {1,3,4}    {3,4}      {2,5}
                             {3,5}      {3,4}
                             {4,5}      {3,5}
                            {1,2,3}     {4,5}
                            {1,2,5}     {5,6}
                            {1,3,4}    {1,2,3}
                            {1,3,5}    {1,2,5}
                            {1,4,5}    {1,3,4}
                            {2,3,5}    {1,3,5}
                            {3,4,5}    {1,4,5}
                           {1,2,3,5}   {1,5,6}
                           {1,3,4,5}   {2,3,5}
                                       {3,4,5}
                                      {1,2,3,5}
                                      {1,3,4,5}
(End)
		

Crossrefs

The case of pairs is A015614.
The case with singletons is A187106.
The version without singletons (except {1}) is A276187.
Row sums of A320436.
The version for divisors > 1 is A343654.
The version for divisors without singletons is A343655.
The maximal version is A343659.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1...n}.
A087087 ranks pairwise coprime subsets of {1...n}.
A326675 ranks pairwise coprime non-singleton subsets of {1...n}.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],CoprimeQ@@#&]],{n,10}]

Formula

a(n) = A187106(n) - n + 1 = A084422(n) - n.
a(n) = A276187(n) + 1. - Gus Wiseman, May 08 2021

Extensions

a(25)-a(43) from Alois P. Heinz, Jan 08 2019

A242464 Number A(n,k) of n-length words w over a k-ary alphabet {a_1,...,a_k} such that w contains never more than j consecutive letters a_j (for 1<=j<=k); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 3, 0, 0, 1, 4, 8, 4, 0, 0, 1, 5, 15, 21, 5, 0, 0, 1, 6, 24, 56, 54, 7, 0, 0, 1, 7, 35, 115, 208, 140, 9, 0, 0, 1, 8, 48, 204, 550, 773, 362, 12, 0, 0, 1, 9, 63, 329, 1188, 2631, 2872, 937, 16, 0, 0, 1, 10, 80, 496, 2254, 6919, 12584, 10672, 2425, 21, 0, 0
Offset: 0

Views

Author

Geoffrey Critzer and Alois P. Heinz, May 15 2014

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order A015614(k+1) for k>1.

Examples

			A(0,k) = 1 for all k: the empty word.
A(1,5) = 5: [1], [2], [3], [4], [5].
A(2,4) = 15: [1,2], [1,3], [1,4], [2,1], [2,2], [2,3], [2,4], [3,1], [3,2], [3,3], [3,4], [4,1], [4,2], [4,3], [4,4].
A(3,3) = 21: [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [1,3,3], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [2,3,3], [3,1,2], [3,1,3], [3,2,1], [3,2,2], [3,2,3], [3,3,1], [3,3,2], [3,3,3].
A(4,2) = 5: [1,2,1,2], [1,2,2,1], [2,1,2,1], [2,1,2,2], [2,2,1,2].
A(n,1) = 0 for n>1.
A(n,0) = 0 for n>0.
Square array A(n,k) begins:
  1, 1,  1,   1,     1,     1,      1,      1, ...
  0, 1,  2,   3,     4,     5,      6,      7, ...
  0, 0,  3,   8,    15,    24,     35,     48, ...
  0, 0,  4,  21,    56,   115,    204,    329, ...
  0, 0,  5,  54,   208,   550,   1188,   2254, ...
  0, 0,  7, 140,   773,  2631,   6919,  15443, ...
  0, 0,  9, 362,  2872, 12584,  40295, 105804, ...
  0, 0, 12, 937, 10672, 60191, 234672, 724892, ...
		

Crossrefs

Columns k=0-10 give: A000007, A019590(n+1), A164001(n+1), A242452, A242495, A242509, A242629, A242630, A242631, A242632, A242633.
Rows n=0-2 give: A000012, A001477, A005563(k-1) for k>0.
Main diagonal gives A242635.

Programs

  • Maple
    b:= proc(n, k, c, t) option remember;
          `if`(n=0, 1, add(`if`(c=t and j=c, 0,
           b(n-1, k, j, 1+`if`(j=c, t, 0))), j=1..k))
        end:
    A:= (n, k)-> b(n, k, 0$2):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    nn=10;Transpose[Map[PadRight[#,nn]&,Table[CoefficientList[Series[1/(1-Sum[v[i]/(1+v[i])/.v[i]->(z-z^(i+1))/(1-z),{i,1,n}]),{z,0,nn}],z],{n,0,nn}]]]//Grid
    (* Second program: *)
    b[n_, k_, c_, t_] := b[n, k, c, t] = If[n == 0, 1, Sum[If[c == t && j == c, 0, b[n - 1, k, j, 1 + If[j == c, t, 0]]], {j, 1, k}]];
    A[n_, k_] := b[n, k, 0, 0];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2020, after Maple *)

Formula

G.f. of column k: 1/(1-Sum_{i=1..k} v(i)/(1+v(i))) with v(i) = (x-x^(i+1))/(1-x).

A276187 Number of subsets of {1,..,n} of cardinality >= 2 such that the elements of each counted subset are pairwise coprime.

Original entry on oeis.org

0, 1, 4, 7, 18, 21, 48, 63, 94, 105, 220, 235, 482, 529, 600, 711, 1438, 1501, 3020, 3211, 3594, 3849, 7720, 7975, 11142, 11877, 14628, 15459, 30946, 31201, 62432, 69855, 76126, 80221, 89820, 91611, 183258, 192601, 208600, 214231, 428502, 431573, 863188, 900563
Offset: 1

Views

Author

Robert C. Lyons, Aug 23 2016

Keywords

Comments

n is prime if and only if a(n) = 2*a(n-1)+n-1. - Robert Israel, Aug 24 2016

Examples

			From _Gus Wiseman_, May 08 2021: (Start)
The a(2) = 1 through a(6) = 21 sets:
  {1,2}   {1,2}    {1,2}     {1,2}      {1,2}
          {1,3}    {1,3}     {1,3}      {1,3}
          {2,3}    {1,4}     {1,4}      {1,4}
         {1,2,3}   {2,3}     {1,5}      {1,5}
                   {3,4}     {2,3}      {1,6}
                  {1,2,3}    {2,5}      {2,3}
                  {1,3,4}    {3,4}      {2,5}
                             {3,5}      {3,4}
                             {4,5}      {3,5}
                            {1,2,3}     {4,5}
                            {1,2,5}     {5,6}
                            {1,3,4}    {1,2,3}
                            {1,3,5}    {1,2,5}
                            {1,4,5}    {1,3,4}
                            {2,3,5}    {1,3,5}
                            {3,4,5}    {1,4,5}
                           {1,2,3,5}   {1,5,6}
                           {1,3,4,5}   {2,3,5}
                                       {3,4,5}
                                      {1,2,3,5}
                                      {1,3,4,5}
(End)
		

Crossrefs

The case of pairs is A015614.
The indivisible instead of coprime version is A051026(n) - n.
Allowing empty sets and singletons gives A084422.
The relatively prime instead of pairwise coprime version is A085945(n) - 1.
Allowing all singletons gives A187106.
Allowing only the singleton {1} gives A320426.
Row sums of A320436, each minus one.
The maximal case is counted by A343659.
The version for sets of divisors is A343655(n) - 1.
A000005 counts divisors.
A186972 counts pairwise coprime k-sets containing n.
A186974 counts pairwise coprime k-sets.
A326675 ranks pairwise coprime non-singleton sets.

Programs

  • Maple
    f:= proc(S) option remember;
        local s, Sp;
        if S = {} then return 1 fi;
        s:= S[-1];
        Sp:= S[1..-2];
        procname(Sp) + procname(select(t -> igcd(t,s)=1, Sp))
    end proc:
    seq(f({$1..n}) - n - 1, n=1..50); # Robert Israel, Aug 24 2016
  • Mathematica
    f[S_] := f[S] = Module[{s, Sp}, If[S == {}, Return[1]]; s = S[[-1]]; Sp = S[[1;;-2]]; f[Sp] + f[Select[Sp, GCD[#, s] == 1&]]];
    Table[f[Range[n]] - n - 1, {n, 1, 50}] (* Jean-François Alcover, Sep 15 2022, after Robert Israel *)
  • PARI
    f(n,k=1)=if(n==1, return(2)); if(gcd(k,n)==1, f(n-1,n*k)) + f(n-1,k)
    a(n)=f(n)-n-1 \\ Charles R Greathouse IV, Aug 24 2016
  • Sage
    from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets
    def is_coprime(x, y): return gcd(x, y) == 1
    max_n = 40
    seq = []
    for n in range(1, max_n+1):
        P = PairwiseCompatibleSubsets(range(1,n+1), is_coprime)
        a_n = len([1 for s in P.list() if len(s) > 1])
        seq.append(a_n)
    print(seq)
    

Formula

a(n) = A320426(n) - 1. - Gus Wiseman, May 08 2021

Extensions

Name and example edited by Robert Israel, Aug 24 2016

A015617 Number of (unordered) triples of integers from [1,n] with no common factors between pairs.

Original entry on oeis.org

0, 0, 1, 2, 7, 8, 19, 25, 37, 42, 73, 79, 124, 138, 159, 183, 262, 277, 378, 405, 454, 491, 640, 668, 794, 850, 959, 1016, 1257, 1285, 1562, 1668, 1805, 1905, 2088, 2150, 2545, 2673, 2866, 2968, 3457, 3522, 4063, 4228, 4431, 4620, 5269, 5385, 5936
Offset: 1

Views

Author

Keywords

Comments

Form the graph with nodes 1..n, joining two nodes by an edge if they are relatively prime; a(n) = number of triangles in this graph. - N. J. A. Sloane, Feb 06 2011. The number of edges in this graph is A015614. - Roberto Bosch Cabrera, Feb 07 2011.

Examples

			For n=5, there are a(5)=7 triples: (1,2,3), (1,2,5), (1,3,4), (1,3,5), (1,4,5), (2,3,5) and (3,4,5) out of binomial(5,3) = 10 triples of distinct integers <= 5.
		

Crossrefs

Subset of A015616 (triples with no common factor) and A015631 (ordered triples with no common factor).
Cf. A185953 (first differences), A186230, Column 3 of triangle A186974.

Programs

  • Mathematica
    a[n_] := Select[Subsets[Range[n], {3}], And @@ (GCD @@ # == 1 & /@ Subsets[#, {2}]) &] // Length; a /@ Range[49]
    (* Jean-François Alcover, Jul 11 2011 *)
  • PARI
    a(n)=sum(a=1,n-2,sum(b=a+1,n-1,sum(c=b+1,n, gcd(a,b)==1 && gcd(a,c)==1 && gcd(b,c)==1))) \\ Charles R Greathouse IV, Apr 28 2015

Formula

For large n one can show that a(n) ~ C*binomial(n,3), where C = 0.28674... = A065473. - N. J. A. Sloane, Feb 06 2011.
a(n) = Sum_{r=1..n} Sum_{k=1..r} A186230(r,k). - Alois P. Heinz, Feb 17 2011

Extensions

Added one example and 2 cross-references. - Olivier Gérard, Feb 06 2011.
Showing 1-10 of 25 results. Next