A237527 Numbers n of the form p^2-p-1 = A165900(p), for prime p, such that n^2-n-1 = A165900(n) is also prime.
5, 155, 505, 2755, 3421, 6805, 11341, 27721, 29755, 31861, 44309, 49505, 52211, 65791, 100171, 121451, 134321, 185329, 195805, 236681, 252505, 258571, 292139, 325469, 375155, 380071, 452255, 457651, 465805, 563249, 676505, 1041419, 1061929
Offset: 1
Keywords
Examples
5 = 3^2-3-1 (3 is prime) and 5^2-5-1 = 19 is also prime. So, 5 is a member of this sequence.
Programs
-
PARI
s=[]; forprime(p=2, 40000, n=p^2-p-1; if(isprime(n^2-n-1), s=concat(s, n))); s \\ Colin Barker, Feb 10 2014
-
Python
import sympy from sympy import isprime {print(n**2-n-1) for n in range(10**4) if isprime(n) and isprime((n**2-n-1)**2-(n**2-n-1)-1)}
Comments