cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A318923 Apply Lenormand's transformation k -> A318921(k) to the primes.

Original entry on oeis.org

0, 1, 0, 3, 1, 1, 0, 1, 3, 3, 15, 0, 0, 1, 7, 1, 7, 7, 1, 3, 0, 7, 1, 2, 8, 2, 11, 3, 3, 12, 63, 1, 0, 1, 0, 3, 3, 1, 3, 1, 5, 1, 31, 16, 4, 19, 5, 31, 25, 6, 6, 31, 28, 31, 0, 3, 1, 7, 0, 2, 3, 0, 5, 7, 6, 7, 1, 0, 3, 3, 8, 11, 15, 3, 15, 63, 8, 9, 8, 10, 9, 2, 15, 12, 15, 15, 48, 12
Offset: 1

Views

Author

N. J. A. Sloane, Sep 08 2018

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) local d, i, l, m, r;
          i, r, l, m:= 0$2, 2, ithprime(n);
          while m>0 do d:= irem(m, 2, 'm');
            if d=l then r:= r+d*2^i; i:=i+1 fi; l:= d
          od; r
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 08 2018

A318925 a(n) = A175046(A318921(n)).

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 3, 7, 0, 0, 0, 3, 12, 3, 7, 15, 0, 0, 0, 3, 0, 0, 3, 7, 24, 12, 3, 7, 28, 7, 15, 31, 0, 0, 0, 3, 0, 0, 3, 7, 0, 0, 0, 3, 12, 3, 7, 15, 48, 24, 12, 51, 12, 3, 7, 15, 56, 28, 7, 15, 60, 15, 31, 63, 0, 0, 0, 3, 0, 0, 3, 7, 0, 0, 0, 3, 12, 3, 7
Offset: 0

Views

Author

N. J. A. Sloane, Sep 09 2018

Keywords

Comments

Inspired by Andrew Weimholt's observation that A318921(A175046(n)) = A001477(n).
As in A318921, the empty string is represented by 0.
a(n) = n iff every run in the binary expansion of n has length at least 2, and otherwise a(n) < n.

Crossrefs

Extensions

More terms from Rémy Sigrist, Sep 09 2018

A319409 a(n) = n - A318921(n).

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 5, 4, 8, 9, 10, 10, 10, 12, 11, 8, 16, 17, 18, 18, 20, 21, 21, 20, 20, 23, 25, 24, 22, 26, 23, 16, 32, 33, 34, 34, 36, 37, 37, 36, 40, 41, 42, 42, 42, 44, 43, 40, 40, 45, 48, 46, 50, 52, 51, 48, 44, 51, 55, 52, 46, 54, 47, 32, 64, 65, 66, 66, 68, 69, 69, 68, 72, 73, 74, 74, 74, 76, 75, 72, 80, 81, 82, 82, 84, 85, 85, 84, 84, 87, 89, 88, 86, 90, 87, 80, 80
Offset: 0

Views

Author

N. J. A. Sloane, Sep 19 2018

Keywords

Comments

How much n decreases by when its binary runs are all shortened by one bit.

Crossrefs

Programs

  • PARI
    a(n) = my (p=-1, d=0, b=1, r=n); while (r, my (l=r%2); if (p!=l, p=l, d+=l*b; b*=2); r\=2); n-d \\ Rémy Sigrist, Sep 25 2018

Formula

a(n) = n iff n is a Fibbinary number (A003714). - Rémy Sigrist, Sep 25 2018

A318922 Apply Lenormand's transformation k -> A318921(k) to the Fibonacci numbers.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 7, 2, 0, 6, 14, 4, 31, 39, 4, 0, 11, 8, 7, 1020, 32, 0, 228, 1016, 109, 249, 160, 7, 112, 3708, 3099, 340, 13208, 12526, 192, 3596, 8957, 999, 4178060, 746, 879, 13296, 15855, 16920, 29184, 227952, 124264, 16192, 984121, 77442, 1952, 16359, 4967, 1044
Offset: 0

Views

Author

N. J. A. Sloane, Sep 08 2018

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) local d, i, l, m, r;
          i, r, l, m:= 0$2, 2, (<<0|1>, <1|1>>^n)[1, 2];
          while m>0 do d:= irem(m, 2, 'm');
            if d=l then r:= r+d*2^i; i:=i+1 fi; l:= d
          od; r
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Sep 08 2018

A318928 Runs-resistance of binary representation of n.

Original entry on oeis.org

1, 2, 1, 3, 2, 3, 1, 3, 3, 2, 4, 2, 4, 3, 1, 3, 3, 5, 4, 4, 2, 5, 4, 3, 4, 4, 3, 3, 4, 3, 1, 3, 3, 5, 3, 3, 5, 4, 3, 4, 5, 2, 4, 3, 4, 5, 4, 3, 3, 3, 2, 4, 4, 3, 3, 2, 3, 4, 3, 3, 4, 3, 1, 3, 3, 5, 3, 3, 5, 3, 4, 3, 3, 5, 6, 4, 5, 3, 3, 4, 5, 4, 4, 4, 2, 5, 4, 5, 5, 4, 5, 5, 4, 5, 4
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2018

Keywords

Comments

Following Lenormand (2003), we define the "runs-resistance" of a finite list L to be the number of times the RUNS transformation must be applied to L in order to reduce L to a list with a single element.
Here it is immaterial whether we read the binary representation of n from left to right or right to left.
The RUNS transformation must be applied at least once, in order to obtain a list, so a(n) >= 1.

Examples

			11 in binary is [1, 0, 1, 1],
which has runs of lengths [1, 1, 2],
which has runs of lengths [2, 1],
which has runs of lengths [1, 1],
which has a single run of length [2].
This took four steps, so a(11) = 4.
		

Crossrefs

See A319103 for an inverse, and A319417 and A319418 for records.
Ignoring the first digit gives A329870.
Cuts-resistance is A319416.
Compositions counted by runs-resistance are A329744.
Binary words counted by runs-resistance are A319411 and A329767.

Programs

  • Maple
    with(transforms);
    # compute Lenormand's "resistance" of a list
    resist:=proc(a) local ct,i,b;
    if whattype(a) <> list then ERROR("input must be a list"); fi:
    ct:=0; b:=a; for i from 1 to 100 do
    if nops(b)=1 then return(ct); fi;
    b:=RUNS(b); ct:=ct+1; od; end;
    a:=[1];
    for n from 2 to 100 do
    b:=convert(n,base,2);
    r:=resist(b);
    a:=[op(a),r];
    od:
  • Mathematica
    Table[If[n == 1, 1, Length[NestWhileList[Length/@Split[#] &, IntegerDigits[n, 2], Length[#] > 1 &]] - 1], {n, 50}] (* Gus Wiseman, Nov 25 2019 *)

Extensions

a(1) corrected by N. J. A. Sloane, Sep 20 2018

A333627 The a(n)-th composition in standard order is the sequence of run-lengths of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 4, 1, 3, 2, 6, 3, 7, 5, 8, 1, 3, 3, 6, 3, 5, 7, 12, 3, 7, 6, 14, 5, 11, 9, 16, 1, 3, 3, 6, 2, 7, 7, 12, 3, 7, 4, 10, 7, 15, 13, 24, 3, 7, 7, 14, 7, 13, 15, 28, 5, 11, 10, 22, 9, 19, 17, 32, 1, 3, 3, 6, 3, 7, 7, 12, 3, 5, 6, 14, 7, 15, 13
Offset: 0

Views

Author

Gus Wiseman, Mar 30 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The standard compositions and their run-lengths:
       0 ~ () -> () ~ 0
      1 ~ (1) -> (1) ~ 1
      2 ~ (2) -> (1) ~ 1
     3 ~ (11) -> (2) ~ 2
      4 ~ (3) -> (1) ~ 1
     5 ~ (21) -> (11) ~ 3
     6 ~ (12) -> (11) ~ 3
    7 ~ (111) -> (3) ~ 4
      8 ~ (4) -> (1) ~ 1
     9 ~ (31) -> (11) ~ 3
    10 ~ (22) -> (2) ~ 2
   11 ~ (211) -> (12) ~ 6
    12 ~ (13) -> (11) ~ 3
   13 ~ (121) -> (111) ~ 7
   14 ~ (112) -> (21) ~ 5
  15 ~ (1111) -> (4) ~ 8
     16 ~ (5) -> (1) ~ 1
    17 ~ (41) -> (11) ~ 3
    18 ~ (32) -> (11) ~ 3
   19 ~ (311) -> (12) ~ 6
		

Crossrefs

Positions of first appearances are A333630.
All of the following pertain to compositions in standard order (A066099):
- The length is A000120.
- The partial sums from the right are A048793.
- The sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Equal runs are counted by A124767.
- Strict compositions are ranked by A233564.
- The partial sums from the left are A272020.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Heinz number is A333219.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.
- Runs-resistance is A333628.
- First appearances of run-resistances are A333629.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[2^(Accumulate[Reverse[Length/@Split[stc[n]]]])]/2,{n,0,30}]

Formula

A000120(n) = A070939(a(n)).
A000120(a(n)) = A124767(n).

A329744 Triangle read by rows where T(n,k) is the number of compositions of n > 0 with runs-resistance k, 0 <= k <= n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 1, 6, 6, 2, 1, 3, 15, 9, 4, 0, 1, 1, 22, 22, 16, 2, 0, 1, 3, 41, 38, 37, 8, 0, 0, 1, 2, 72, 69, 86, 26, 0, 0, 0, 1, 3, 129, 124, 175, 78, 2, 0, 0, 0, 1, 1, 213, 226, 367, 202, 14, 0, 0, 0, 0, 1, 5, 395, 376, 750, 469, 52, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Triangle begins:
   1
   1   1
   1   1   2
   1   2   3   2
   1   1   6   6   2
   1   3  15   9   4   0
   1   1  22  22  16   2   0
   1   3  41  38  37   8   0   0
   1   2  72  69  86  26   0   0   0
   1   3 129 124 175  78   2   0   0   0
   1   1 213 226 367 202  14   0   0   0   0
   1   5 395 376 750 469  52   0   0   0   0   0
Row n = 6 counts the following compositions:
  (6)  (33)      (15)    (114)    (1131)
       (222)     (24)    (411)    (1311)
       (111111)  (42)    (1113)   (11121)
                 (51)    (1221)   (12111)
                 (123)   (2112)
                 (132)   (3111)
                 (141)   (11112)
                 (213)   (11211)
                 (231)   (21111)
                 (312)
                 (321)
                 (1122)
                 (1212)
                 (2121)
                 (2211)
		

Crossrefs

Row sums are A000079.
Column k = 1 is A032741.
Column k = 2 is A329745.
Column k = n - 2 is A329743.
The version for partitions is A329746.
The version with rows reversed is A329750.

Programs

  • Mathematica
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}]

A027649 a(n) = 2*(3^n) - 2^n.

Original entry on oeis.org

1, 4, 14, 46, 146, 454, 1394, 4246, 12866, 38854, 117074, 352246, 1058786, 3180454, 9549554, 28665046, 86027906, 258149254, 774578834, 2323998646, 6972520226, 20918609254, 62757924914, 188277969046, 564842295746, 1694543664454, 5083664547794, 15251060752246
Offset: 0

Views

Author

Keywords

Comments

Poly-Bernoulli numbers B_n^(k) with k=-2.
Binomial transform of A007051, if both sequences start at 0. Binomial transform of A000225(n+1). - Paul Barry, Mar 24 2003
Euler expands (1-z)/(1-5z+6z^2) and finds the general term. Section 226 of the Introductio indicates that he could have written down the recursion relation: a(n) = 5 a(n-1)-6 a(n-2). - V. Frederick Rickey (fred-rickey(AT)usma.edu), Feb 10 2006
Let R be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xRy if x is a subset of y or y is a subset of x. Then a(n) = |R|. - Ross La Haye, Dec 22 2006
With regard to the comment by Ross La Haye: For proper subsets see A056182. - For nonempty subsets see A091344. - For nonempty proper subsets see a(n+1) in A260217. - Manfred Boergens, Aug 02 2023
If x, y are two n-bit binary strings then a(n) gives the number of pairs (x,y) such that XOR(x, y) = ABS(x - y). - Ramasamy Chandramouli, Feb 15 2009
Equals row sums of the triangular version of A038573. - Gary W. Adamson, Jun 04 2009
Inverse binomial transform of A085350. - Paul Curtz, Nov 14 2009
Related to the number of even a's in a nontrivial cycle (should one exist) in the 3x+1 Problem, where a <= floor(log_2(2*(3^n) - 2^n)). The value n correlates to the number of odds in such a nontrivial cycle. See page 1288 of Crandall's paper. Also, this relation gives another proof that the number of odds divided by the number of evens in a nontrivial cycle is bounded by log 2 / log 3 (this observation does not resolve the finite cycles conjecture as the value could be arbitrarily close to this bound). However, the same argument gives that log 2 / log 3 is less than or equal to the number of odds divided by the number of evens in a divergent sequence (should one exist), as log 2 / log 3 is the limit value for a cycle of an arbitrarily large length, where the length is given by the value n. - Jeffrey R. Goodwin, Aug 04 2011
Row sums of Riordan triangle A106516. - Wolfdieter Lang, Jan 09 2015
Number of restricted barred preferential arrangements having 3 bars in which the sections are all restricted sections such that (for fixed sections i and j) section i or section j is empty. - Sithembele Nkonkobe, Oct 12 2015
This is also row 2 of A281891: for n >= 1, when consecutive positive integers are written as a product of primes in nondecreasing order, a factor of 2 or 3 occurs in n-th position a(n) times out of every 6^n. - Peter Munn, May 18 2017
Also row sums of A124929. - Omar E. Pol, Jun 15 2017
This is the sum of A318921(n) for n in the range 2^(k+1) to 2^(k+2)-1. See A318921 for proof. - N. J. A. Sloane, Sep 25 2018
a(n) is also the number of acyclic orientations of the complete bipartite graph K_{2,n}. - Vincent Pilaud, Sep 15 2020
a(n-1) is also the number of n-digit numbers whose largest decimal digit is 2. - Stefano Spezia, Nov 15 2023

References

  • Leonhard Euler, Introductio in analysin infinitorum (1748), section 216.

Crossrefs

Row n = 2 of array A099594.
Also occurs as a row, column, diagonal or as row sums in A038573, A085870, A090888, A106516, A217764, A281891.

Programs

  • Haskell
    a027649 n = a027649_list !! n
    a027649_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (1, 1)
    -- Reinhard Zumkeller, Jun 09 2013
    
  • Magma
    [2*(3^n)-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
    
  • Maple
    a(n, k):= (-1)^n*sum( (-1)^'m'*'m'!*Stirling2(n,'m')/('m'+1)^k,'m'=0..n);
    seq(a(n, -2), n=0..30);
  • Mathematica
    Table[2(3^n)-2^n,{n,0,30}] (* or *) LinearRecurrence[ {5,-6},{1,4},31]  (* Harvey P. Dale, Apr 22 2011 *)
  • PARI
    a(n)=2*(3^n)-2^n \\ Charles R Greathouse IV, Jul 16 2011
    
  • PARI
    Vec((1-x)/((1-2*x)*(1-3*x)) + O(x^50)) \\ Altug Alkan, Oct 12 2015
    
  • SageMath
    [2*(3^n - 2^(n-1)) for n in (0..30)] # G. C. Greubel, Aug 01 2022

Formula

G.f.: (1-x)/((1-2*x)*(1-3*x)).
a(n) = 3*a(n-1) + 2^(n-1), with a(0) = 1.
a(n) = Sum_{k=0..n} binomial(n, k)*(2^(k+1) - 1). - Paul Barry, Mar 24 2003
Partial sums of A053581. - Paul Barry, Jun 26 2003
Main diagonal of array (A085870) defined by T(i, 1) = 2^i - 1, T(1, j) = 2^j - 1, T(i, j) = T(i-1, j) + T(i-1, j-1). - Benoit Cloitre, Aug 05 2003
a(n) = A090888(n, 3). - Ross La Haye, Sep 21 2004
a(n) = Sum_{k=0..n} binomial(n+2, k+1)*Sum_{j=0..floor(k/2)} A001045(k-2j). - Paul Barry, Apr 17 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(n,j)*binomial(j+1,k+1). - Paul Barry, Sep 18 2006
a(n) = A166060(n+1)/6. - Philippe Deléham, Oct 21 2009
a(n) = 5*a(n-1) - 6*a(n-2), a(0)=1, a(1)=4. - Harvey P. Dale, Apr 22 2011
a(n) = A217764(n,2). - Ross La Haye, Mar 27 2013
For n>0, a(n) = 3 * a(n-1) + 2^(n-1) = 2 * (a(n-1) + 3^(n-1)). - J. Conrad, Oct 29 2015
for n>0, a(n) = 2 * (1 + 2^(n-2) + Sum_{x=1..n-2} Sum_{k=0..x-1} (binomial(x-1,k)*(2^(k+1) + 2^(n-x+k)))). - J. Conrad, Dec 10 2015
E.g.f.: exp(2*x)*(2*exp(x) - 1). - Stefano Spezia, May 18 2024

Extensions

Better formulas from David W. Wilson and Michael Somos
Incorrect formula removed by Charles R Greathouse IV, Mar 18 2010
Duplications (due to corrections to A numbers) removed by Peter Munn, Jun 15 2017

A333628 Runs-resistance of the n-th composition in standard order. Number of steps taking run-lengths to reduce the n-th composition in standard order to a singleton.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 1, 0, 2, 1, 3, 2, 2, 3, 1, 0, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 3, 1, 0, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 2, 4, 2, 3, 2, 4, 3, 4, 2, 3, 3, 4, 3, 1, 0, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 2, 2, 3, 3, 2, 2, 2, 4, 3, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Mar 31 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Starting with 13789 and repeatedly applying A333627 gives: 13789 -> 859 -> 110 -> 29 -> 11 -> 6 -> 3 -> 2, corresponding to the compositions: (1,2,2,1,1,2,1,1,2,1) -> (1,2,2,1,2,1,1) -> (1,2,1,1,2) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2), so a(13789) = 7.
		

Crossrefs

Number of times applying A333627 to reach a power of 2, starting with n.
Positions of first appearances are A333629.
All of the following pertain to compositions in standard order (A066099):
- The length is A000120.
- The partial sums from the right are A048793.
- The sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Equal runs are counted by A124767.
- Strict compositions are ranked by A233564.
- The partial sums from the left are A272020.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Heinz number is A333219.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.
- First appearances for specified run-lengths are A333630.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[runsres[stc[n]],{n,100}]

A329746 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 with runs-resistance k, 0 <= k <= n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 0, 1, 3, 4, 3, 0, 0, 1, 1, 4, 8, 1, 0, 0, 1, 3, 6, 10, 2, 0, 0, 0, 1, 2, 8, 13, 6, 0, 0, 0, 0, 1, 3, 11, 20, 7, 0, 0, 0, 0, 0, 1, 1, 11, 29, 14, 0, 0, 0, 0, 0, 0, 1, 5, 19, 31, 20, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Triangle begins:
  1
  1  1
  1  1  1
  1  2  1  1
  1  1  2  3  0
  1  3  4  3  0  0
  1  1  4  8  1  0  0
  1  3  6 10  2  0  0  0
  1  2  8 13  6  0  0  0  0
  1  3 11 20  7  0  0  0  0  0
  1  1 11 29 14  0  0  0  0  0  0
  1  5 19 31 20  1  0  0  0  0  0  0
  1  1 17 50 30  2  0  0  0  0  0  0  0
  1  3 25 64 37  5  0  0  0  0  0  0  0  0
  1  3 29 74 62  7  0  0  0  0  0  0  0  0  0
Row n = 8 counts the following partitions:
  (8)  (44)        (53)    (332)      (4211)
       (2222)      (62)    (422)      (32111)
       (11111111)  (71)    (611)
                   (431)   (3221)
                   (521)   (5111)
                   (3311)  (22211)
                           (41111)
                           (221111)
                           (311111)
                           (2111111)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A032741.
Column k = 2 is A329745.
A similar invariant is frequency depth; see A323014, A325280.
The version for compositions is A329744.
The version for binary words is A329767.

Programs

  • Mathematica
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[Length[Select[IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}]
  • PARI
    \\ rr(p) gives runs resistance of partition.
    rr(p)={my(r=0); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L, i-k); k=i)); p=Vec(L); r++); r}
    row(n)={my(v=vector(n)); forpart(p=n, v[1+rr(Vec(p))]++); v}
    { for(n=1, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023
Showing 1-10 of 52 results. Next