A052124
Expansion of e.g.f. exp(-2*x)/(1-x)^3.
Original entry on oeis.org
1, 1, 4, 16, 88, 568, 4288, 36832, 354688, 3781504, 44199424, 561823744, 7714272256, 113769309184, 1793341407232, 30085661765632, 535170830467072, 10060645294440448, 199287423535808512, 4148644277780217856, 90545807649965080576, 2067407731760475406336, 49285894020028992323584
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.64(b).
-
A052124 := proc(n) option remember; if n <=1 then 1 else n*A052124(n-1)+2*(n-1)*A052124(n-2); fi; end; # Detlef Pauly
-
Table[(n+5)*(n+2)*n!*Sum[(-1)^k*2^(k+2)*(k+3)/(k+5)!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 28 2012 *)
With[{nn=20},CoefficientList[Series[Exp[(-2x)]/(1-x)^3,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 23 2017 *)
-
my(x='x+O('x^25)); Vec(serlaplace( exp(-2*x)/(1-x)^3)) \\ Michel Marcus, Oct 25 2021
-
from math import factorial
from fractions import Fraction
def A052124(n): return int((n+5)*(n+2)*factorial(n)*sum(Fraction((-1 if k&1 else 1)*(k+3)<Chai Wah Wu, Apr 20 2023
A263823
a(n) = n!*Sum_{k=0..n} Fibonacci(k-1)/k!, where Fibonacci(-1) = 1, Fibonacci(n) = A000045(n) for n>=0.
Original entry on oeis.org
1, 1, 3, 10, 42, 213, 1283, 8989, 71925, 647346, 6473494, 71208489, 854501957, 11108525585, 155519358423, 2332790376722, 37324646028162, 634518982479741, 11421341684636935, 217005492008104349, 4340109840162091161, 91142306643403921146, 2005130746154886276158
Offset: 0
For n = 3, a(3) = 3!*(Fibonacci(-1)/0! + Fibonacci(0)/1! + Fibonacci(1)/2! + Fibonacci(2)/3!) = 6*(1 + 0 + 1/2 + 1/6) = 10.
For n = 5, Gamma(5+1, phi)*exp(phi) = 120*sqrt(5) + 333 = 240*phi + 213, so a(5) = 213.
G.f. = 1 + x + 3*x^2 + 10*x^3 + 42*x^4 + 213*x^5 + 1283*x^6 + 8989*x^7 + 71925*x^8 + ...
-
Table[n! Sum[Fibonacci[k-1]/k!, {k, 0, n}], {n, 0, 22}]
Round@Table[(E^(1-GoldenRatio) GoldenRatio Gamma[n+1, 1-GoldenRatio] + E^GoldenRatio Gamma[n+1, GoldenRatio]/GoldenRatio)/Sqrt[5], {n, 0, 22}]
A233449
a(n) = Sum_{k=0..n} k! * 2^(n-k).
Original entry on oeis.org
1, 3, 8, 22, 68, 256, 1232, 7504, 55328, 473536, 4575872, 49068544, 577138688, 7381298176, 101940887552, 1511556143104, 23945902174208, 403579232444416, 7209532170616832, 136064164750065664, 2705030337676771328, 56501002847062982656, 1237002733471733645312
Offset: 0
G.f. = 1 + 3*x + 8*x^2 + 22*x^3 + 68*x^4 + 256*x^5 + 1232*x^6 + ... - _Michael Somos_, Nov 21 2018
-
# Assuming sequence starts with a(0) = 0 (see comment in formula section).
egf := exp(2*x - 2)*(Ei(1, 2*x - 2) - Ei(1, -2)):
assume(x > 0): ser := series(egf, x, 24):
seq(n! * simplify(coeff(ser, x, n)), n = 0..23); # Peter Luschny, Mar 05 2024
-
Table[Sum[k!*2^(n-k), {k, 0, n}], {n, 0, 20}]
Table[FullSimplify[(2^(1+n)*(I*Pi + ExpIntegralEi[2]) + ExpIntegralE[2+n,-2]*Gamma[2+n])/E^2], {n, 0, 20}]
max = 20; Clear[g]; g[max+2] = 1; g[k_] := g[k] = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/g[k+1] ))); gf = g[0]/(1-2*x); CoefficientList[Series[gf, {x, 0, max}], x] (* Vaclav Kotesovec, Jan 13 2015, after Sergei N. Gladkovskii *)
-
{a(n) = sum(k=0, n, k! * 2^(n-k))}; /* Michael Somos, Nov 21 2018 */
-
# Assuming sequence starts with a(0) = 0 (see formula section).
def a(n):
if n == 0: return 0
s = f = 1
for k in range(1, n):
f *= k / 2
s += f
return round(2**(n - 1) * s) # 'round' only to assure the integer type.
print([a(n) for n in range(24)]) # Peter Luschny, Mar 05 2024
A383381
Expansion of e.g.f. exp(-2*x) / (1-x)^5.
Original entry on oeis.org
1, 3, 14, 82, 576, 4688, 43264, 445632, 5062016, 62812288, 844863744, 12239474432, 189939644416, 3142842052608, 55223903596544, 1026805938614272, 20139224002953216, 415503046091767808, 8994794537935765504, 203848794955954716672, 4826475681472562855936, 119162892472107134353408
Offset: 0
A292977
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, -1, 1, 6, 1, -2, 2, 2, 24, 1, -3, 5, -2, 9, 120, 1, -4, 10, -12, 8, 44, 720, 1, -5, 17, -34, 33, 8, 265, 5040, 1, -6, 26, -74, 120, -78, 112, 1854, 40320, 1, -7, 37, -138, 329, -424, 261, 656, 14833, 362880, 1, -8, 50, -232, 744, -1480, 1552, -360, 5504, 133496, 3628800
Offset: 0
Square array begins:
n=0: 1, 1, 1, 1, 1, 1, ...
n=1: 1, 0, -1, -2, -3, -4, ...
n=2: 2, 1, 2, 5, 10, 17, ...
n=3: 6, 2, -2, -12, -34, -74, ...
n=4: 24, 9, 8, 33, 120, 329, ...
n=5: 120, 44, 8, -78, -424, -1480, ...
...
E.g.f. of column k: A_k(x) = 1 + (1 - k)*x/1! + (k^2 - 2*k + 2)*x^2/2! + (-k^3 + 3*k^2 - 6*k + 6) x^3/3! + (k^4 - 4*k^3 + 12*k^2 - 24*k + 24)*x^4/4! + ...
Main diagonal:
A134095 (absolute values).
-
Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
FullSimplify[Table[Function[k, Exp[-k] Gamma[n + 1, -k]][j - n], {j, 0, 10}, {n, 0, j}]] // Flatten
A335391
Square array read by antidiagonals downwards: for n >= 2, T(k,n) is the number of permutations of [k+n] that differ in every position from both the identity permutation and a permutation consisting of k 1-cycles and one n-cycle.
Original entry on oeis.org
2, -1, 0, 0, 1, 2, 1, 0, 1, 4, 2, 3, 4, 7, 18, 13, 16, 19, 24, 35, 88, 80, 95, 114, 137, 168, 221, 530, 579, 672, 783, 916, 1077, 1280, 1589, 3708, 4738, 5397, 6164, 7061, 8114, 9359, 10860, 12979, 29666, 43387, 48704, 54773, 61720, 69697, 78888, 89527, 101976, 118663, 266992
Offset: 0
Array starts:
k/n | 0 1 2 3 4 5 6 7
-----------------------------------------------------------------------
0 | 2 -1 0 1 2 13 80 579
1 | 0 1 0 3 16 95 672 5397
2 | 2 1 4 19 114 783 6164 54773
3 | 4 7 24 137 916 7061 61720 602955
4 | 18 35 168 1077 8114 69697 671736 7172007
5 | 88 221 1280 9359 78888 749547 7913440 91815601
6 | 530 1589 10860 89527 837794 8741875 100478588 1260186153
7 | 3708 12979 101976 938181 9669196 110058257 1369406616 18475560567
There are T(1,3)=3 permutations that differ from 1234=(1)(2)(3)(4) and 1342=(1)(234) in every position: 2413, 3421, and 4123.
-
T := proc(n,k) local t; t := proc(n, k) option remember;
simplify((n + k)!*hypergeom([-n], [-n - k], -1)) end:
if k = 0 then return 2*t(n, 0) fi;
add((-1)^j*(2*k)/(2*k-j)*binomial(2*k-j, j)*t(n, k-j), j=0 ..k) end:
seq(lprint(seq(T(n, k), k=0..7)),n=0..7); # Peter Luschny, Jul 22 2020
-
f(k, n) = sum(j=0, k, (-1)^j*binomial(k, j)*(n+k-j)!);
T(k, n) = if (n==0, 2*f(k, 0), sum(j=0, n, (-1)^j*(2*n)/(2*n-j)*binomial(2*n-j, j)*f(k, n-j)));
matrix(7, 7,n, k, T(n-1,k-1))
\\ Michel Marcus, Jun 26 2020
-
def f(k,n):
return sum((-1)^j*binomial(k,j)*factorial(n+k-j) for j in range(0,k+1))
def T(k,n):
if n==0:
return 2*f(k,0)
else:
return sum((-1)^j*(2*n)/(2*n-j)*binomial(2*n-j,j)*f(k,n-j) for j in range(0,n+1))
A346397
Expansion of e.g.f. -log(1 - x) * exp(-2*x).
Original entry on oeis.org
0, 1, -3, 8, -18, 44, -80, 272, 112, 5280, 38464, 414336, 4573184, 55680000, 731374592, 10335551488, 156303374336, 2518984953856, 43099088904192, 780268881068032, 14902336355991552, 299452809651617792, 6315501510330286080, 139485953831281098752, 3219718099932087844864
Offset: 0
-
nmax = 24; CoefficientList[Series[-Log[1 - x] Exp[-2 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-2)^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 24}]
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(i-3)*v[i]+2*(i-1)*v[i-1]+(-2)^(i-1)); v; \\ Seiichi Manyama, May 27 2022
A033166
Incrementally largest terms in the continued fraction for zeta(3).
Original entry on oeis.org
1, 4, 18, 30, 428, 458, 527, 542, 659, 922, 1355, 1817, 3292, 4635, 6841, 162050, 197106, 270086, 270919, 344064, 2079442, 5492021, 196362299, 220581908, 1292221854, 5841289122, 11886461834
Offset: 1
Cf.
A013631 (continued fraction of zeta(3)).
Cf.
A229055 (positions of incrementally largest terms in the c.f. of zeta(3)).
A111139
a(n) = n!*Sum_{k=0..n} Fibonacci(k)/k!.
Original entry on oeis.org
0, 1, 3, 11, 47, 240, 1448, 10149, 81213, 730951, 7309565, 80405304, 964863792, 12543229529, 175605213783, 2634078207355, 42145251318667, 716469272418936, 12896446903543432, 245032491167329389, 4900649823346594545
Offset: 0
-
a:=n->sum(fibonacci (j)*n!/j!,j=0..n):seq(a(n),n=0..20); # Zerinvary Lajos, Mar 19 2007
-
f[n_] := n!*Sum[Fibonacci[k]/k!, {k, 0, n}]; Table[ f[n], {n, 0, 20}] (* or *)
Simplify[ Range[0, 20]!CoefficientList[ Series[2/Sqrt[5]*Exp[x/2]*Sinh[Sqrt[5]*x/2]/(1 - x), {x, 0, 20}], x]] (* Robert G. Wilson v, Oct 21 2005 *)
Module[{nn=20,fibs,fct},fct=Range[0,nn]!;fibs=Accumulate[ Fibonacci[ Range[ 0,nn]]/fct];Times@@@Thread[{fct,fibs}]] (* Harvey P. Dale, Feb 19 2014 *)
Round@Table[(E^GoldenRatio Gamma[n+1, GoldenRatio] - E^(1-GoldenRatio) Gamma[n+1, 1-GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 27 2015 *)
-
vector(100, n, n--; n!*sum(k=0, n, fibonacci(k)/k!)) \\ Altug Alkan, Oct 28 2015
A277431
Expansion of e.g.f.: cosh(sqrt(2)*x)/(1-x).
Original entry on oeis.org
1, 1, 4, 12, 52, 260, 1568, 10976, 87824, 790416, 7904192, 86946112, 1043353408, 13563594304, 189890320384, 2848354805760, 45573676892416, 774752507171072, 13945545129079808, 264965357452516352, 5299307149050328064, 111285450130056889344, 2448279902861251567616
Offset: 0
G.f. = 1 + x + 4*x^2 + 12*x^3 + 52*x^4 + 260*x^5 + 1568*x^6 + ... - _Michael Somos_, Oct 01 2018
-
I:=[1,4,12]; [1] cat [n le 3 select I[n] else n*Self(n-1) + 2*Self(n-2) - 2*(n-2)*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 30 2018
-
Round@Table[(Gamma[n + 1, Sqrt[2]] Exp[Sqrt[2]] + Gamma[n + 1, -Sqrt[2]]/Exp[Sqrt[2]])/2, {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
Table[SeriesCoefficient[Cosh[Sqrt[2] x]/(1 - x), {x, 0, n}] n!, {n, 0, 20}]
a[ n_] := If[ n < 0, 0, n! Sum[ 2^k / (2 k)!, {k, 0, n/2}]]; (* Michael Somos, Oct 01 2018 *)
With[{nn=30},CoefficientList[Series[Cosh[x Sqrt[2]]/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 13 2024 *)
-
x='x+O('x^30); Vec(serlaplace(cosh(sqrt(2)*x)/(1-x))) \\ G. C. Greubel, Sep 30 2018
-
{a(n) = if( n<0, 0, n! * sum(k=0, n\2, 2^k / (2*k)!))}; /* Michael Somos, Oct 01 2018 */
Comments