cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 160 results. Next

A070933 Expansion of Product_{k>=1} 1/(1 - 2*t^k).

Original entry on oeis.org

1, 2, 6, 14, 34, 74, 166, 350, 746, 1546, 3206, 6550, 13386, 27114, 54894, 110630, 222794, 447538, 898574, 1801590, 3610930, 7231858, 14480654, 28983246, 58003250, 116054034, 232186518, 464475166, 929116402, 1858449178, 3717247638, 7434950062, 14870628026, 29742206138, 59485920374, 118973809798, 237950730522, 475905520474
Offset: 0

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 21 2002

Keywords

Comments

See A083355 for a similar formula. - Thomas Wieder, May 07 2008
Partitions of n into 2 sorts of parts: the parts are unordered, but not the sorts; see example and formula by Wieder. - Joerg Arndt, Apr 28 2013
Convolution inverse of A070877. - George Beck, Dec 02 2018
Number of conjugacy classes of n X n matrices over GF(2). Cf. Morrison link, section 2.9. - Geoffrey Critzer, May 26 2021

Examples

			From _Joerg Arndt_, Apr 28 2013: (Start)
There are a(3)=14 partitions of 3 with 2 ordered sorts. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:1  1:0  ]
04:  [ 1:0  1:1  1:1  ]
05:  [ 1:1  1:0  1:0  ]
06:  [ 1:1  1:0  1:1  ]
07:  [ 1:1  1:1  1:0  ]
08:  [ 1:1  1:1  1:1  ]
09:  [ 2:0  1:0  ]
10:  [ 2:0  1:1  ]
11:  [ 2:1  1:0  ]
12:  [ 2:1  1:1  ]
13:  [ 3:0  ]
14:  [ 3:1  ]
(End)
		

Crossrefs

Cf. A083355.
Column k=2 of A246935.
Cf. A048651.
Row sums of A256193.
Antidiagonal sums of A322210.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-2*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    CoefficientList[ Series[ Product[1 / (1 - 2t^k), {k, 1, 35}], {t, 0, 35}], t]
    CoefficientList[Series[E^Sum[2^k*x^k / (k*(1-x^k)), {k,1,30}],{x,0,30}],x] (* Vaclav Kotesovec, Sep 09 2014 *)
    (O[x]^20 - 1/QPochhammer[2,x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    N=66; q='q+O('q^N); Vec(1/sum(n=0, N, (-2)^n*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014
    

Formula

a(n) = (1/n)*Sum_{k=1..n} A054598(k)*a(n-k). - Vladeta Jovovic, Nov 23 2002
a(n) is asymptotic to c*2^n where c=3.46253527447396564949732... - Benoit Cloitre, Oct 26 2003. Right value of this constant is c = 1/A048651 = 3.46274661945506361153795734292443116454075790290443839132935303175891543974042... . - Vaclav Kotesovec, Sep 09 2014
Euler transform of A000031(n). - Vladeta Jovovic, Jun 23 2004
a(n) = Sum_{k=1..n} p(n,k)*A000079(k) where p(n,k) = number of integer partitions of n into k parts. - Thomas Wieder, May 07 2008
a(n) = S(n,1), where S(n,m) = 2 + Sum_{k=m..floor(n/2)} 2*S(n-k,k), S(n,n)=2, S(0,m)=1, S(n,m)=0 for n < m. - Vladimir Kruchinin, Sep 07 2014
a(n) = Sum_{lambda,mu,nu} (c^{lambda}{mu,nu})^2, where lambda ranges over all partitions of n, mu and nu range over all partitions satisfying |mu| + |nu| = n, and c^{lambda}{mu,nu} denotes a Littlewood-Richardson coefficient. - Richard Stanley, Nov 16 2014
G.f.: Sum_{i>=0} 2^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018
G.f.: Product_{j>=1} Product_{i>=1} 1/(1-x^(i*j))^A001037(j) given in Morrison link section 2.9. - Geoffrey Critzer, May 26 2021

Extensions

Edited and extended by Robert G. Wilson v, May 25 2002

A328595 Numbers whose reversed binary expansion is a necklace.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 48, 52, 54, 56, 58, 60, 62, 63, 64, 72, 80, 84, 88, 92, 96, 100, 104, 106, 108, 112, 116, 118, 120, 122, 124, 126, 127, 128, 136, 144, 152, 160, 164, 168, 170, 172, 176, 180
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2019

Keywords

Comments

A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
   1:      1 ~ {1}
   2:     10 ~ {2}
   3:     11 ~ {1,2}
   4:    100 ~ {3}
   6:    110 ~ {2,3}
   7:    111 ~ {1,2,3}
   8:   1000 ~ {4}
  10:   1010 ~ {2,4}
  12:   1100 ~ {3,4}
  14:   1110 ~ {2,3,4}
  15:   1111 ~ {1,2,3,4}
  16:  10000 ~ {5}
  20:  10100 ~ {3,5}
  24:  11000 ~ {4,5}
  26:  11010 ~ {2,4,5}
  28:  11100 ~ {3,4,5}
  30:  11110 ~ {2,3,4,5}
  31:  11111 ~ {1,2,3,4,5}
  32: 100000 ~ {6}
  36: 100100 ~ {3,6}
		

Crossrefs

A similar concept is A065609.
The version with the most significant digit ignored is A328607.
Lyndon words are A328596.
Aperiodic words are A328594.
Binary necklaces are A000031.
Necklace compositions are A008965.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Select[Range[100],neckQ[Reverse[IntegerDigits[#,2]]]&]
  • Python
    from itertools import count, islice
    from sympy.utilities.iterables import necklaces
    def a_gen():
        for n in count(1):
            t = []
            for i in necklaces(n,2):
                if sum(i)>0:
                    t.append(sum(2**j for j in range(len(i)) if i[j] > 0))
            yield from sorted(t)
    A328595_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, May 24 2024

A000029 Number of necklaces with n beads of 2 colors, allowing turning over (these are also called bracelets).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 13, 18, 30, 46, 78, 126, 224, 380, 687, 1224, 2250, 4112, 7685, 14310, 27012, 50964, 96909, 184410, 352698, 675188, 1296858, 2493726, 4806078, 9272780, 17920860, 34669602, 67159050, 130216124, 252745368, 490984488, 954637558, 1857545300
Offset: 0

Views

Author

Keywords

Comments

"Necklaces with turning over allowed" are usually called bracelets. - Joerg Arndt, Jun 10 2016

Examples

			For n=2, the three bracelets are AA, AB, and BB. For n=3, the four bracelets are AAA, AAB, ABB, and BBB. - _Robert A. Russell_, Sep 24 2018
		

References

  • J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
  • Martin Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pages 245-246.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

Row sums of triangle in A052307, second column of A081720, column 2 of A051137.
Cf. A000011, A000013, A000031 (turning over not allowed), A001371 (primitive necklaces), A059076, A164090.

Programs

  • Maple
    with(numtheory): A000029 := proc(n) local d,s; if n = 0 then return 1 else if n mod 2 = 1 then s := 2^((n-1)/2) else s := 2^(n/2-2)+2^(n/2-1) fi; for d in divisors(n) do s := s+phi(d)*2^(n/d)/(2*n) od; return s; fi end:
  • Mathematica
    a[0] := 1; a[n_] := Fold[#1 + EulerPhi[#2]2^(n/#2)/(2n) &, If[OddQ[n], 2^((n - 1)/2), 2^(n/2 - 1) + 2^(n/2 - 2)], Divisors[n]]
    mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n,{n,mx}]+(1+x)^2/(1-2*x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
    a[0] = 1; a[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n); Array[a, 36, 0] (* Jean-François Alcover, Nov 05 2017 *)
  • PARI
    a(n)=if(n<1,!n,(n%2+3)/4*2^(n\2)+sumdiv(n,d,eulerphi(n/d)*2^d)/2/n)
    
  • Python
    from sympy import divisors, totient
    def a(n):
        return 1 if n<1 else ((2**(n//2+1) if n%2 else 3*2**(n//2-1)) + sum(totient(n//d)*2**d for d in divisors(n))//n)//2
    print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 23 2017

Formula

a(n) = Sum_{d divides n} phi(d)*2^(n/d)/(2*n) + either 2^((n - 1)/2) if n odd or 2^(n/2 - 1) + 2^(n/2 - 2) if n even.
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n + (1 + x)^2/(1 - 2*x^2))/2. - Herbert Kociemba, Nov 02 2016
Equals (A000031 + A164090) / 2 = A000031 - A059076 = A059076 + A164090. - Robert A. Russell, Sep 24 2018
From Richard L. Ollerton, May 04 2021: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} 2^gcd(n,k)/(2*n) + either 2^((n - 1)/2) if n odd or 2^(n/2 - 1) + 2^(n/2 - 2) if n even.
a(0) = 1; a(n) = A000031(n)/2 + (2^floor((n+1)/2) + 2^ceiling((n+1)/2))/4. See A051137. (End)

Extensions

More terms from Christian G. Bower

A329312 Length of the co-Lyndon factorization of the binary expansion of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 4, 1, 2, 2, 3, 1, 3, 2, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 3, 2, 3, 2, 4, 1, 2, 3, 4, 2, 3, 2, 5, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 2, 3, 2, 3, 2, 4, 1, 3, 3, 4, 2, 3, 2, 5, 1, 2, 2, 3, 1, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2019

Keywords

Comments

The co-Lyndon product of two or more finite sequences is defined to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, the co-Lyndon product of (231) and (213) is (212313), the product of (221) and (213) is (212213), and the product of (122) and (2121) is (1212122). A co-Lyndon word is a finite sequence that is prime with respect to the co-Lyndon product. Equivalently, a co-Lyndon word is a finite sequence that is lexicographically strictly greater than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into co-Lyndon words, and if these factors are arranged in a certain order, their concatenation is equal to their co-Lyndon product. For example, (1001) has sorted co-Lyndon factorization (1)(100).
Also the length of the Lyndon factorization of the inverted binary expansion of n, where the inverted digits are 1 minus the binary digits.

Examples

			The binary indices of 1..20 together with their co-Lyndon factorizations are:
   1:     (1) = (1)
   2:    (10) = (10)
   3:    (11) = (1)(1)
   4:   (100) = (100)
   5:   (101) = (10)(1)
   6:   (110) = (110)
   7:   (111) = (1)(1)(1)
   8:  (1000) = (1000)
   9:  (1001) = (100)(1)
  10:  (1010) = (10)(10)
  11:  (1011) = (10)(1)(1)
  12:  (1100) = (1100)
  13:  (1101) = (110)(1)
  14:  (1110) = (1110)
  15:  (1111) = (1)(1)(1)(1)
  16: (10000) = (10000)
  17: (10001) = (1000)(1)
  18: (10010) = (100)(10)
  19: (10011) = (100)(1)(1)
  20: (10100) = (10100)
		

Crossrefs

The non-"co" version is A211100.
Positions of 1's are A275692.
The reversed version is A329326.

Programs

  • Mathematica
    colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And];
    colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]]@Last[Select[Range[Length[q]],colynQ[Take[q,#]]&]]];
    Table[Length[colynfac[IntegerDigits[n,2]]],{n,100}]

A047996 Triangle read by rows: T(n,k) is the (n,k)-th circular binomial coefficient, where 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 1, 4, 7, 10, 7, 4, 1, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 1, 1, 6, 22
Offset: 0

Views

Author

Keywords

Comments

Equivalently, T(n,k) = number of necklaces with k black beads and n-k white beads (binary necklaces of weight k).
The same sequence arises if we take the table U(n,k) = number of necklaces with n black beads and k white beads and read it by antidiagonals (cf. A241926). - Franklin T. Adams-Watters, May 02 2014
U(n,k) is also equal to the number of ways to express 0 as a sum of k elements in Z/nZ. - Jens Voß, Franklin T. Adams-Watters, N. J. A. Sloane, Apr 30 2014 - May 05 2014. See link ("A Note on Modular Partitions and Necklaces") for proof.
The generating function for column k is given by the substitution x_j -> x^j/(1-x^j) in the cycle index of the Symmetric Group of order k. - R. J. Mathar, Nov 15 2018
From Petros Hadjicostas, Jul 12 2019: (Start)
Regarding the comments above by Voss, Adams-Watters, and Sloane, note that Fredman (1975) proved that the number S(n, k, v) of vectors (a_0, ..., a_{n-1}) of nonnegative integer components that satisfy a_0 + ... + a_{n-1} = k and Sum_{i=0..n-1} i*a_i = v (mod n) is given by S(n, k, v) = (1/(n + k)) * Sum_{d | gcd(n, k)} A054535(d, v) * binomial((n + k)/d, k/d) = S(k, n, v).
This result was also proved by Elashvili et al. (1999), who also proved that S(n, k, v) = Sum_{d | gcd(n, k, v)} S(n/d, k/d, 1). Here, S(n, k, 0) = A241926(n, k) = U(n, k) = T(n + k, k) (where T(n, k) is the current array). Also, S(n, k, 1) = A245558(n, k). See also Panyushev (2011) for more general results and for generating functions.
Finally, note that A054535(d, v) = c_d(v) = Sum_{s | gcd(d,v)} s*Moebius(d/s). These are the Ramanujan sums, which equal also the von Sterneck function c_d(v) = phi(d) * Moebius(d/gcd(d, v))/phi(d/gcd(d, v)). We have A054535(d, v) = A054534(v, d).
It would be interesting to see whether there is a proof of the results by Fredman (1975), Elashvili et al. (1999), and Panyushev (2011) for a general v using Molien series as it is done by Sloane (2014) for the case v = 0 (in which case, A054535(d, 0) = phi(d)). (Even though the columns of array A054535(d, v) start at v = 1, we may start the array at column v = 0 as well.)
(End)
U(n, k) is the number of equivalence classes of k-tuples of residues modulo n, identifying those that differ componentwise by a constant and those that differ by a permutation. - Álvar Ibeas, Sep 21 2021

Examples

			Triangle starts:
[ 0]  1,
[ 1]  1,  1,
[ 2]  1,  1,  1,
[ 3]  1,  1,  1,  1,
[ 4]  1,  1,  2,  1,  1,
[ 5]  1,  1,  2,  2,  1,  1,
[ 6]  1,  1,  3,  4,  3,  1,  1,
[ 7]  1,  1,  3,  5,  5,  3,  1,  1,
[ 8]  1,  1,  4,  7, 10,  7,  4,  1,  1,
[ 9]  1,  1,  4, 10, 14, 14, 10,  4,  1,  1,
[10]  1,  1,  5, 12, 22, 26, 22, 12,  5,  1, 1,
[11]  1,  1,  5, 15, 30, 42, 42, 30, 15,  5, 1, 1,
[12]  1,  1,  6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, ...
		

References

  • N. G. de Bruijn, Polya's theory of counting, in: Applied Combinatorial Mathematics (E. F. Beckenbach, ed.), John Wiley and Sons, New York, 1964, pp. 144-184 (implies g.f. for this triangle).
  • Richard Stanley, Enumerative Combinatorics, 2nd. ed., Vol 1, Chapter I, Problem 105, pp. 122 and 168, discusses the number of subsets of Z/nZ that add to 0. - N. J. A. Sloane, May 06 2014
  • J. Voß, Posting to Sequence Fans Mailing List, April 30, 2014.
  • H. S. Wilf, personal communication to N. J. A. Sloane, Nov., 1990.
  • See A000031 for many additional references and links.

Crossrefs

Row sums: A000031. Columns 0-12: A000012, A000012, A004526, A007997(n+5), A008610, A008646, A032191-A032197.
See A037306 and A241926 for essentially identical triangles.
See A245558, A245559 for a closely related array.

Programs

  • Maple
    A047996 := proc(n,k) local C,d; if k= 0 then return 1; end if; C := 0 ; for d in numtheory[divisors](igcd(n,k)) do C := C+numtheory[phi](d)*binomial(n/d,k/d) ; end do: C/n ; end proc:
    seq(seq(A047996(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Apr 14 2011
  • Mathematica
    t[n_, k_] := Total[EulerPhi[#]*Binomial[n/#, k/#] & /@ Divisors[GCD[n, k]]]/n; t[0, 0] = 1; Flatten[Table[t[n, k], {n, 0, 13}, {k, 0, n}]] (* Jean-François Alcover, Jul 19 2011, after given formula *)
  • PARI
    p(n) = if(n<=0, n==0, 1/n * sum(i=0,n-1, (x^(n/gcd(i,n))+1)^gcd(i,n) ));
    for (n=0,17, print(Vec(p(n)))); /* print triangle */
    /* Joerg Arndt, Sep 28 2012 */
    
  • PARI
    T(n,k) = if(n<=0, n==0, 1/n * sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d,k/d) ) );
    /* print triangle: */
    { for (n=0, 17, for (k=0, n, print1(T(n,k),", "); ); print(); ); }
    /* Joerg Arndt, Oct 21 2012 */

Formula

T(n, k) = (1/n) * Sum_{d | (n, k)} phi(d)*binomial(n/d, k/d).
T(2*n,n) = A003239(n); T(2*n+1,n) = A000108(n). - Philippe Deléham, Jul 25 2006
G.f. for row n (n>=1): (1/n) * Sum_{i=0..n-1} ( x^(n/gcd(i,n)) + 1 )^gcd(i,n). - Joerg Arndt, Sep 28 2012
G.f.: Sum_{n, k >= 0} T(n, k)*x^n*y^k = 1 - Sum_{s>=1} (phi(s)/s)*log(1-x^s*(1+y^s)). - Petros Hadjicostas, Oct 26 2017
Product_{d >= 1} (1 - x^d - y^d) = Product_{i,j >= 0} (1 - x^i*y^j)^T(i+j, j), where not both i and j are zero. (It follows from Somos' infinite product for array A051168.) - Petros Hadjicostas, Jul 12 2019

Extensions

Name edited by Petros Hadjicostas, Nov 16 2017

A065609 Positive m such that when written in binary, no rotated value of m is greater than m.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 40, 42, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 72, 80, 84, 96, 98, 100, 104, 106, 108, 112, 114, 116, 118, 120, 122, 124, 126, 127, 128, 136, 144, 160, 164, 168, 170, 192, 194, 196, 200, 202
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Nov 06 2001

Keywords

Comments

Rotated values of m are defined as the numbers which occur when m is shifted 1, 2, ... bits to the right with the last bits added to the front; e.g., the rotated values of 1011 are 1011, 1101, 1110 and 0111.
The number of k-bit binary numbers in this sequence is A008965. This gives the row lengths when the sequence is regarded as a table.
If m is in the sequence, then so is 2m. All odd terms are of the form 2^k - 1. - Ivan Neretin, Aug 04 2016
First differs from A328595 in lacking 44, with binary expansion {1, 0, 1, 1, 0, 0}, and 92, with binary expansion {1, 0, 1, 1, 1, 0, 0}. - Gus Wiseman, Oct 31 2019

Examples

			14 is included because 14 in binary is 1110. 1110 has the rotated values of 0111, 1011 and 1101 -- 7, 11 and 13 -- which are all smaller than 14.
		

Crossrefs

A similar concept is A328595.
The version with the most significant digit ignored is A328668 or A328607.
Numbers whose reversed binary expansion is a Lyndon word are A328596.
Numbers whose binary expansion is aperiodic are A328594.
Binary necklaces are A000031.
Necklace compositions are A008965.

Programs

  • Maple
    filter:= proc(n) local L, k;
      if n::odd then return evalb(n+1 = 2^ilog2(n+1)) fi;
      L:= convert(convert(n,binary),string);
      for k from 1 to length(L)-1 do
        if not lexorder(StringTools:-Rotate(L,k),L) then return false fi;
      od;
      true
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 05 2016
  • Mathematica
    Select[Range[200], # == Max[FromDigits[#, 2] & /@ NestList[RotateLeft, dg = IntegerDigits[#, 2], Length@dg]] &] (* Ivan Neretin, Aug 04 2016 *)
  • Python
    def ok(n):
        b = bin(n)[2:]
        return b > "0" and all(b[i:] + b[:i] <= b for i in range(1, len(b)))
    print([k for k in range(203) if ok(k)]) # Michael S. Branicky, May 26 2022

Extensions

Edited by Franklin T. Adams-Watters, Apr 09 2010

A027376 Number of ternary irreducible monic polynomials of degree n; dimensions of free Lie algebras.

Original entry on oeis.org

1, 3, 3, 8, 18, 48, 116, 312, 810, 2184, 5880, 16104, 44220, 122640, 341484, 956576, 2690010, 7596480, 21522228, 61171656, 174336264, 498111952, 1426403748, 4093181688, 11767874940, 33891544368, 97764009000, 282429535752, 817028131140, 2366564736720, 6863037256208, 19924948267224, 57906879556410
Offset: 0

Views

Author

Keywords

Comments

Number of Lyndon words of length n on {1,2,3}. A Lyndon word is primitive (not a power of another word) and is earlier in lexicographic order than any of its cyclic shifts. - John W. Layman, Jan 24 2006
Exponents in an expansion of the Hardy-Littlewood constant Product(1 - (3*p - 1)/(p - 1)^3, p prime >= 5), whose decimal expansion is in A065418: the constant equals Product_{n >= 2} (zeta(n)*(1 - 2^(-n))*(1 - 3^(-n)))^(-a(n)). - Michael Somos, Apr 05 2003
Number of aperiodic necklaces with n beads of 3 colors. - Herbert Kociemba, Nov 25 2016
Number of irreducible harmonic polylogarithms, see page 299 of Gehrmann and Remiddi reference and table 1 of Maître article. - F. Chapoton, Aug 09 2021
For n>=2, a(n) is the number of Hesse loops of length 2*n, see Theorem 22 of Dutta, Halbeisen, Hungerbühler link. - Sayan Dutta, Sep 22 2023
For n>=2, a(n) is the number of orbits of size n of isomorphism classes of elliptic curves under the Hesse derivative, see Theorem 2 of Kettinger link. - Jake Kettinger, Aug 07 2024

Examples

			For n = 2 the a(2)=3 polynomials are  x^2+1, x^2+x+2, x^2+2*x+2. - _Robert Israel_, Dec 16 2015
		

References

  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

Crossrefs

Programs

  • Maple
    with(numtheory): A027376 := n -> `if`(n = 0, 1,
    add(mobius(d)*3^(n/d), d = divisors(n))/n):
    seq(A027376(n), n = 0..32);
  • Mathematica
    a[0]=1; a[n_] := Module[{ds=Divisors[n], i}, Sum[MoebiusMu[ds[[i]]]3^(n/ds[[i]]), {i, 1, Length[ds]}]/n]
    a[0]=1; a[n_] := DivisorSum[n, MoebiusMu[n/#]*3^#&]/n; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 01 2015 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,3],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n)=if(n<1,n==0,sumdiv(n,d,moebius(n/d)*3^d)/n)

Formula

a(n) = (1/n)*Sum_{d|n} mu(d)*3^(n/d).
(1 - 3*x) = Product_{n>0} (1 - x^n)^a(n).
G.f.: k = 3, 1 - Sum_{i >= 1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) ~ 3^n / n. - Vaclav Kotesovec, Jul 01 2018
a(n) = 2*A046211(n) + A046209(n). - R. J. Mathar, Oct 21 2021

A184271 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal binary arrays (n >= 1, k >= 1).

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 6, 14, 14, 6, 8, 40, 64, 40, 8, 14, 108, 352, 352, 108, 14, 20, 362, 2192, 4156, 2192, 362, 20, 36, 1182, 14624, 52488, 52488, 14624, 1182, 36, 60, 4150, 99880, 699600, 1342208, 699600, 99880, 4150, 60, 108, 14602, 699252, 9587580, 35792568
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Comments

This is a 2-dimensional generalization of binary necklaces (A000031). A toroidal array or necklace can be defined either as an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns, or as a matrix that is minimal among all possible rotations of its sequence of rows and its sequence of columns. - Gus Wiseman, Feb 04 2019

Examples

			      1     2        3           4            5             6              7
----------------------------------------------------------------------------
1:    2     3        4           6            8            14             20
2:    3     7       14          40          108           362           1182
3:    4    14       64         352         2192         14624          99880
4:    6    40      352        4156        52488        699600        9587580
5:    8   108     2192       52488      1342208      35792568      981706832
6:   14   362    14624      699600     35792568    1908897152   104715443852
7:   20  1182    99880     9587580    981706832  104715443852 11488774559744
8:   36  4150   699252   134223976  27487816992 5864063066500
9:   60 14602  4971184  1908881900 781874936816
10: 108 52588 35792568 27487869472
From _Gus Wiseman_, Feb 04 2019: (Start)
Inequivalent representatives of the T(2,3) = 14 toroidal necklaces:
  [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1]
  [0 0 0] [0 0 1] [0 1 1] [1 1 1] [0 0 1] [0 1 0] [0 1 1]
.
  [0 0 1] [0 0 1] [0 0 1] [0 1 1] [0 1 1] [0 1 1] [1 1 1]
  [1 0 1] [1 1 0] [1 1 1] [0 1 1] [1 0 1] [1 1 1] [1 1 1]
(End)
		

Crossrefs

Main diagonal is A179043.
Cf. A001037 (binary Lyndon words), A008965, A323858, A323859 (binary toroidal necklaces of size n), A323861 (aperiodic version), A323865, A323870 (normal toroidal necklaces), A323872.

Programs

  • Mathematica
    a[n_, k_] := Sum[If[Mod[n, c] == 0, Sum[If[Mod[k, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n k/LCM[c, d]), 0], {d, 1, k}], 0], {c, 1, n}]/(n k)
    (* second program *)
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],neckmatQ]],{n,8},{k,n-1}] (* Gus Wiseman, Feb 04 2019 *)

Formula

T(n,k) = (1/(nk))*Sum_{ c divides n } Sum_{ d divides k } phi(c)*phi(d)*2^(nk/lcm(c,d)), where phi is A000010 and lcm stands for least common multiple. - Stewart N. Ethier, Aug 24 2012

A329313 Length of the Lyndon factorization of the reversed binary expansion of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 4, 1, 2, 2, 3, 1, 3, 2, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 3, 2, 3, 2, 4, 1, 2, 3, 4, 1, 3, 2, 5, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 2, 3, 2, 3, 2, 4, 1, 3, 3, 4, 2, 3, 2, 5, 1, 2, 2, 3, 1, 4, 3
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2019

Keywords

Comments

We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon word is a finite sequence that is prime with respect to the Lyndon product. Every finite sequence has a unique (orderless) factorization into Lyndon words, and if these factors are arranged in lexicographically decreasing order, their concatenation is equal to their Lyndon product. For example, (1001) has sorted Lyndon factorization (001)(1).

Examples

			The sequence of reversed binary expansions of the nonnegative integers together with their Lyndon factorizations begins:
   0:      () = ()
   1:     (1) = (1)
   2:    (01) = (01)
   3:    (11) = (1)(1)
   4:   (001) = (001)
   5:   (101) = (1)(01)
   6:   (011) = (011)
   7:   (111) = (1)(1)(1)
   8:  (0001) = (0001)
   9:  (1001) = (1)(001)
  10:  (0101) = (01)(01)
  11:  (1101) = (1)(1)(01)
  12:  (0011) = (0011)
  13:  (1011) = (1)(011)
  14:  (0111) = (0111)
  15:  (1111) = (1)(1)(1)(1)
  16: (00001) = (00001)
  17: (10001) = (1)(0001)
  18: (01001) = (01)(001)
  19: (11001) = (1)(1)(001)
  20: (00101) = (00101)
		

Crossrefs

The non-reversed version is A211100.
Positions of 1's are A328596.
The "co" version is A329326.
Binary Lyndon words are counted by A001037 and ranked by A102659.
Numbers whose reversed binary expansion is a necklace are A328595.
Numbers whose reversed binary expansion is a aperiodic are A328594.
Length of the co-Lyndon factorization of the binary expansion is A329312.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And];
    lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#1]]&]]]];
    Table[If[n==0,0,Length[lynfac[Reverse[IntegerDigits[n,2]]]]],{n,0,30}]

A075195 Jablonski table T(n,k) read by antidiagonals: T(n,k) = number of necklaces with n beads of k colors.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 11, 6, 1, 6, 15, 24, 24, 8, 1, 7, 21, 45, 70, 51, 14, 1, 8, 28, 76, 165, 208, 130, 20, 1, 9, 36, 119, 336, 629, 700, 315, 36, 1, 10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1, 11, 55, 249, 1044, 3367, 7826, 11165, 8230, 2195, 108, 1
Offset: 1

Views

Author

Christian G. Bower, Sep 07 2002

Keywords

Comments

From Richard L. Ollerton, May 07 2021: (Start)
Here, as in A000031, turning over is not allowed.
(1/n) * Dirichlet convolution of phi(n) and k^n. (End)

Examples

			The array T(n,k) for n >= 1, k >= 1 begins:
  1,  2,   3,    4,     5,     6,      7, ...
  1,  3,   6,   10,    15,    21,     28, ...
  1,  4,  11,   24,    45,    76,    119, ...
  1,  6,  24,   70,   165,   336,    616, ...
  1,  8,  51,  208,   629,  1560,   3367, ...
  1, 14, 130,  700,  2635,  7826,  19684, ...
  1, 20, 315, 2344, 11165, 39996, 117655, ...
From _Indranil Ghosh_, Mar 25 2017: (Start)
Triangle formed when the array is read by antidiagonals:
   1;
   2,  1;
   3,  3,   1;
   4,  6,   4,   1;
   5, 10,  11,   6,    1;
   6, 15,  24,  24,    8,    1;
   7, 21,  45,  70,   51,   14,    1;
   8, 28,  76, 165,  208,  130,   20,   1;
   9, 36, 119, 336,  629,  700,  315,  36,  1;
  10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1;
  ... (End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 86 (2.2.23).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 496.
  • Louis Comtet, Analyse combinatoire, Tome 2, p. 104 #17, P.U.F., 1970.

Crossrefs

Main Diagonal: A056665. A054630 and A054631 are the upper and lower triangles.

Programs

  • Mathematica
    t[n_, k_] := (1/n)*Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[t[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Philippe Deléham *)
  • PARI
    T(n, k) = (1/n) * sumdiv(n, d, eulerphi(d)*k^(n/d));
    for(n=1, 15, for(k=1, n, print1(T(k, n - k + 1),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy.ntheory import totient, divisors
    def T(n,k): return sum(totient(d)*k**(n//d) for d in divisors(n))//n
    for n in range(1, 16):
        print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 25 2017

Formula

T(n,k) = (1/n)*Sum_{d | n} phi(d)*k^(n/d), where phi = Euler totient function A000010. - Philippe Deléham, Oct 08 2003
From Petros Hadjicostas, Feb 08 2021: (Start)
O.g.f. for column k >= 1: Sum_{n>=1} T(n,k)*x^n = -Sum_{j >= 1} (phi(j)/j) * log(1 - k*x^j).
Linear recurrence for row n >= 1: T(n,k) = Sum_{j=0..n} -binomial(j-n-1,j+1) * T(n,k-1-j) for k >= n + 2. (This recurrence is essentially due to Robert A. Russell, who contributed it in A321791.) (End)
From Richard L. Ollerton, May 07 2021: (Start)
T(n,k) = (1/n)*Sum_{i=1..n} k^gcd(n,i).
T(n,k) = (1/n)*Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)).
T(n,k) = (1/n)*A185651(n,k) for n >= 1, k >= 1. (End)
Product_{n>=1} 1/(1 - x^n)^T(n,k) = Product_{n>=1} 1/(1 - k*x^n). - Seiichi Manyama, Apr 12 2025

Extensions

Additional references from Philippe Deléham, Oct 08 2003
Previous Showing 21-30 of 160 results. Next