cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 401 results. Next

A102125 Iccanobirt numbers (15 of 15): a(n) = R(R(a(n-1)) + R(a(n-2)) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 44, 18, 941, 472, 405, 729, 5071, 6313, 8675, 90601, 31591, 9853, 11733, 31865, 31149, 736481, 365533, 313416, 3154311, 9834802, 5123383, 7112507, 12796921, 35055832, 19867834, 56610708, 906334841, 561210372
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<3, binomial(n,2),
          R(R(a(n-1)) + R(a(n-2)) + R(a(n-3))))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+R[a[n-2]]+R[a[n-3]]];Table[a[n], {n, 0, 40}]
    rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; nxt[{a_, b_, c_}] := {b, c, rev[rev[a] + rev[b] + rev[c]]}; Transpose[NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Mar 20 2015 *)
    nxt[{a_,b_,c_}]:=With[{ir=IntegerReverse},{b,c,ir[ir[a]+ir[b]+ir[c]]}]; NestList[nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Jul 22 2025 *)

Formula

a(n) = A004086(A102117(n)).

A104144 a(n) = Sum_{k=1..9} a(n-k); a(8) = 1, a(n) = 0 for n < 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, 16272, 32512, 64960, 129792, 259328, 518145, 1035269, 2068498, 4132920, 8257696, 16499120, 32965728, 65866496, 131603200, 262947072, 525375999, 1049716729, 2097364960
Offset: 0

Views

Author

Jean Lefort (jlefort.apmep(AT)wanadoo.fr), Mar 07 2005

Keywords

Comments

Sometimes called the Fibonacci 9-step numbers.
For n >= 8, this gives the number of integers written without 0 in base ten, the sum of digits of which is equal to n-7. E.g., a(11) = 8 because we have the 8 numbers: 4, 13, 22, 31, 112, 121, 211, 1111.
The offset for this sequence is fairly arbitrary. - N. J. A. Sloane, Feb 27 2009

Crossrefs

Cf. A000045, A000073, A000078, A001591, A001592, A066178, A079262 (Fibonacci n-step numbers).
Cf. A255529 (Indices of primes in this sequence).

Programs

  • Maple
    for n from 0 to 50 do k(n):=sum((-1)^i*binomial(n-8-9*i,i)*2^(n-8-10*i),i=0..floor((n-8)/10))-sum((-1)^i*binomial(n-9-9*i,i)*2^(n-9-10*i),i=0..floor((n-9)/10)):od:seq(k(n),n=0..50);a:=taylor((z^8-z^9)/(1-2*z+z^(10)),z=0,51);for p from 0 to 50 do j(p):=coeff(a,z,p):od :seq(j(p),p=0..50); # Richard Choulet, Feb 22 2010
  • Mathematica
    a={1, 0, 0, 0, 0, 0, 0, 0, 0}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}]
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
    With[{nn=9},LinearRecurrence[Table[1,{nn}],Join[Table[0,{nn-1}],{1}],50]] (* Harvey P. Dale, Aug 17 2013 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,1,1,1,1,1,1,1,1]^n*[0;0;0;0;0;0;0;0;1])[1,1] \\ Charles R Greathouse IV, Jun 16 2015
    
  • PARI
    A104144(n,m=9)=(matrix(m,m,i,j,j==i+1||i==m)^n)[1,m] \\ M. F. Hasler, Apr 22 2018

Formula

a(n) = Sum_{k=1..9} a(n-k) for n > 8, a(8) = 1, a(n) = 0 for n=0..7.
G.f.: x^8/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9). - N. J. A. Sloane, Dec 04 2011
Another form of the g.f. f: f(z) = (z^8-z^9)/(1-2*z+z^(10)), then a(n) = Sum_((-1)^i*binomial(n-8-9*i,i)*2^(n-8-10*i), i=0..floor((n-8)/10))-Sum_((-1)^i*binomial(n-9-9*i,i)*2^(n-9-10*i), i=0..floor((n-9)/10)) with Sum_(alpha(i), i=m..n)=0 for m>n. - Richard Choulet, Feb 22 2010
From N. J. A. Sloane, Dec 04 2011: (Start)
Let b be the smallest root (in magnitude) of g(x) := 1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9, b = 0.50049311828655225605926845999420216157202861343888...
Let c = -b^8/g'(b) = 0.00099310812055463178382193226558248643030626601288701...
Then a(n) is the nearest integer to c/b^n. (End)

Extensions

Edited by N. J. A. Sloane, Aug 15 2006 and Nov 11 2006
Incorrect formula deleted by N. J. A. Sloane, Dec 04 2011
Name edited by M. F. Hasler, Apr 22 2018

A352103 a(n) is the maximal (or lazy) tribonacci representation of n using a binary system of vectors not containing three consecutive 0's.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 111, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10010, 10011, 10100, 10101, 10110, 10111, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100100, 100101, 100110, 100111, 101001, 101010, 101011, 101100, 101101, 101110, 101111, 110010
Offset: 0

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

Each nonnegative integer has 2 unique representations as sums of distinct positive tribonacci numbers (A000073): 1, 2, 4, 7, 13, 24, ...: the minimal (or greedy, A278038) representation in which there are no 3 consecutive 1's (i.e., no 3 consecutive tribonacci numbers appear in the sum), and the maximal (or lazy) representation of n in which no 3 consecutive 0's appear.

Examples

			a(5) = 101 = 4 + 1.
a(6) = 110 = 4 + 2.
a(7) = 111 = 4 + 2 + 1.
		

Crossrefs

Similar sequences: A104326 (Fibonacci), A130311 (Lucas).

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; a[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0]

Formula

a(n) = A007088(A003796(n+1)).

A104621 Heptanacci-Lucas numbers.

Original entry on oeis.org

7, 1, 3, 7, 15, 31, 63, 127, 247, 493, 983, 1959, 3903, 7775, 15487, 30847, 61447, 122401, 243819, 485679, 967455, 1927135, 3838783, 7646719, 15231991, 30341581, 60439343, 120393007, 239818559, 477709983, 951581183, 1895515647, 3775799303, 7521257025
Offset: 0

Views

Author

Jonathan Vos Post, Mar 17 2005

Keywords

Comments

This 7th-order linear recurrence is a generalization of the Lucas sequence A000032. Mario Catalani would refer to this is a generalized heptanacci sequence, had he not stopped his series of sequences after A001644 "generalized tribonacci", A073817 "generalized tetranacci", A074048 "generalized pentanacci", A074584 "generalized hexanacci." T. D. Noe and I have noted that each of these has many more primes than the corresponding tribonacci A000073 (see A104576), tetranacci A000288 (see A104577), pentanacci, hexanacci and heptanacci (see A104414). For primes in Heptanacci-Lucas numbers, see A104622. For semiprimes in Heptanacci-Lucas numbers, see A104623.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (-7+6*x+ 5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6+x^7) )); // G. C. Greubel, Apr 22 2019
    
  • Maple
    A104621 := proc(n)
        option remember;
        if n <=6 then
            op(n+1,[7, 1, 3, 7, 15, 31, 63])
        else
            add(procname(n-i),i=1..7) ;
        end if;
    end proc: # R. J. Mathar, Mar 26 2015
  • Mathematica
    a[0]=7; a[1]=1; a[2]=3; a[3]=7; a[4]=15; a[5]=31; a[6]=63; a[n_]:= a[n]= a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]+a[n-7]; Table[a[n], {n,0,40}] (* Robert G. Wilson v, Mar 17 2005 *)
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1}, {7, 1, 3, 7, 15, 31, 63}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    my(x='x+O('x^40)); Vec((-7+6*x+5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6+x^7)) \\ G. C. Greubel, Dec 18 2017
    
  • PARI
    polsym(polrecip(1-x-x^2-x^3-x^4-x^5-x^6-x^7), 40) \\ G. C. Greubel, Apr 22 2019
    
  • Sage
    ((-7+6*x+5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6 +x^7)).series(x, 41).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7); a(0) = 7, a(1) = 1, a(2) = 3, a(3) = 7, a(4) = 15, a(5) = 31, a(6) = 63.
From R. J. Mathar, Nov 16 2007: (Start)
G.f.: (7 - 6*x - 5*x^2 - 4*x^3 - 3*x^4 - 2*x^5 - x^6)/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7).
a(n) = 7*A066178(n) - 6*A066178(n-1) - 5*A066178(n-2) - ... - 2*A066178(n-5) - A066178(n-6) if n >= 6. (End)

A113153 Sum of the first n nonzero tribonacci numbers, in ascending order, as bases, with the same, in descending order, as exponents.

Original entry on oeis.org

1, 2, 4, 8, 17, 54, 472, 27216, 84738887, 299164114847940, 311903053042108587337426568, 5846720173185251353387753850814872871131756204168
Offset: 1

Views

Author

Jonathan Vos Post, Jan 04 2006

Keywords

Examples

			For the tribonacci sequence starting t(1)=t(2)=1, t(3)=2, that is, the nonzero terms of A000073:
a(1) = t(1)^t(1) = 1^1 = 1.
a(2) = t(1)^t(2) + t(2)^t(1) = 1^1 + 1^1 = 2.
a(3) = t(1)^t(3) + t(2)^t(2) + t(3)^t(1) = 1^2 + 1^1 + 2^1 = 4.
a(4) = t(1)^t(4) + t(2)^t(3) + t(3)^t(2) + t(4)^t(1) = 1^4 + 1^2 + 2^1 + 4^1 = 8.
a(5) = 1^7 + 1^4 + 2^2 + 4^1 + 7^1 = 17.
a(6) = 1^13 + 1^7 + 2^4 + 4^2 + 7^1 + 13^1 = 54.
		

Crossrefs

Cf. A000073.

Programs

  • Mathematica
    a[0] = a[1] = 0 ; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; Table[Sum[a[k + 2]^(a[n - k + 1]), {k, 1, n}], {n, 1, 10}] (* G. C. Greubel, May 18 2017 *)

Formula

a(n) = Sum_{i=1..n} A000073(i+1)^A000073(n-i+2).

Extensions

Name clarified by Arthur O'Dwyer, Jul 24 2024

A135491 Number of ways to toss a coin n times and not get a run of four.

Original entry on oeis.org

1, 2, 4, 8, 14, 26, 48, 88, 162, 298, 548, 1008, 1854, 3410, 6272, 11536, 21218, 39026, 71780, 132024, 242830, 446634, 821488, 1510952, 2779074, 5111514, 9401540, 17292128, 31805182, 58498850, 107596160, 197900192, 363995202, 669491554, 1231386948, 2264873704
Offset: 0

Views

Author

James R FitzSimons (cherry(AT)getnet.net), Feb 07 2008

Keywords

Crossrefs

Cf. A000073. Column 2 of A265624. Cf. A135492, A135493, A000213, A058265.

Programs

Formula

a(n) = 2*A000073(n+2) for n > 0.
a(n) = a(n-1) + a(n-2) + a(n-3) for n > 3.
G.f.: -(x+1)*(x^2+1)/(x^3+x^2+x-1).
a(n) = nearest integer to b*c^n, where b = 1.2368... and c = 1.839286755... is the real root of x^3-x^2-x-1 = 0. See A058265. - N. J. A. Sloane, Jan 06 2010
G.f.: (1-x^4)/(1-2*x+x^4) and generally to "not get a run of k" (1-x^k)/(1-2*x+x^k). - Geoffrey Critzer, Feb 01 2012
G.f.: Q(0)/x^2 - 2/x- 1/x^2, where Q(k) = 1 + (1+x)*x^2 + (2*k+3)*x - x*(2*k+1 +x+x^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
a(n) = A000213(n+3) - A000213(n+2), n>=1. - Peter M. Chema, Jan 11 2017.

Extensions

More terms from Robert G. Wilson v, Feb 10 2008
a(0)=1 prepended by Alois P. Heinz, Dec 10 2015

A159741 a(n) = 8*(2^n - 1).

Original entry on oeis.org

8, 24, 56, 120, 248, 504, 1016, 2040, 4088, 8184, 16376, 32760, 65528, 131064, 262136, 524280, 1048568, 2097144, 4194296, 8388600, 16777208, 33554424, 67108856, 134217720, 268435448, 536870904, 1073741816, 2147483640, 4294967288, 8589934584, 17179869176, 34359738360
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Apr 20 2009

Keywords

Comments

Fifth diagonal of the array which contains m-acci numbers in the m-th row.
The base array is constructed from m-acci numbers starting each with 1, 1, and 2 and filling one row of the table (see the examples).
The main and the upper diagonals of the table are the powers of 2, A000079.
The first subdiagonal is essentially A000225, followed by essentially A036563.
The next subdiagonal is this sequence here, followed by A159742, A159743, A159744, A159746, A159747, A159748.
a(n) written in base 2: 1000, 11000, 111000, 1111000, ..., i.e., n times 1 and 3 times 0 (A161770). - Jaroslav Krizek, Jun 18 2009
Also numbers for which n^8/(n+8) is an integer. - Vicente Izquierdo Gomez, Jan 03 2013

Examples

			From _R. J. Mathar_, Apr 22 2009: (Start)
The base table is
.1..1....1....1....1....1....1....1....1....1....1....1....1....1
.1..1....1....1....1....1....1....1....1....1....1....1....1....1
.2..2....2....2....2....2....2....2....2....2....2....2....2....2
.0..2....3....4....4....4....4....4....4....4....4....4....4....4
.0..2....5....7....8....8....8....8....8....8....8....8....8....8
.0..2....8...13...15...16...16...16...16...16...16...16...16...16
.0..2...13...24...29...31...32...32...32...32...32...32...32...32
.0..2...21...44...56...61...63...64...64...64...64...64...64...64
.0..2...34...81..108..120..125..127..128..128..128..128..128..128
.0..2...55..149..208..236..248..253..255..256..256..256..256..256
.0..2...89..274..401..464..492..504..509..511..512..512..512..512
.0..2..144..504..773..912..976.1004.1016.1021.1023.1024.1024.1024
.0..2..233..927.1490.1793.1936.2000.2028.2040.2045.2047.2048.2048
.0..2..377.1705.2872.3525.3840.3984.4048.4076.4088.4093.4095.4096
Columns: A000045, A000073, A000078, A001591, A001592 etc. (End)
		

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 22 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = 8*(2^n-1).
G.f.: 8*x/((2*x-1)*(x-1)). (End)
From Jaroslav Krizek, Jun 18 2009: (Start)
a(n) = Sum_{i=3..(n+2)} 2^i.
a(n) = Sum_{i=1..n} 2^(i+2).
a(n) = a(n-1) + 2^(n+2) for n >= 2. (End)
a(n) = A173787(n+3,3) = A175166(2*n)/A175161(n). - Reinhard Zumkeller, Feb 28 2010
From Elmo R. Oliveira, Jun 15 2025: (Start)
E.g.f.: 8*exp(x)*(exp(x) - 1).
a(n) = 8*A000225(n) = 4*A000918(n+1) = 2*A028399(n+2). (End)

Extensions

More terms from R. J. Mathar, Apr 22 2009
Edited by Al Hakanson (hawkuu(AT)gmail.com), May 11 2009
Comments claiming negative entries deleted by R. J. Mathar, Aug 24 2009

A050231 a(n) is the number of n-tosses having a run of 3 or more heads for a fair coin (i.e., probability is a(n)/2^n).

Original entry on oeis.org

0, 0, 1, 3, 8, 20, 47, 107, 238, 520, 1121, 2391, 5056, 10616, 22159, 46023, 95182, 196132, 402873, 825259, 1686408, 3438828, 6999071, 14221459, 28853662, 58462800, 118315137, 239186031, 483072832, 974791728, 1965486047, 3960221519, 7974241118, 16047432332, 32276862265
Offset: 1

Views

Author

Keywords

Comments

a(n-1) is the number of compositions of n with at least one part >= 4. - Joerg Arndt, Aug 06 2012

References

  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, p. 300, 1968.

Crossrefs

Column 4 of A109435.

Programs

  • Magma
    R:= PowerSeriesRing(Integers(), 60);
    [0,0] cat Coefficients(R!( x^3/((1-2*x)*(1-x-x^2-x^3)) )); // G. C. Greubel, Jun 01 2025
    
  • Mathematica
    LinearRecurrence[{3, -1, -1, -2}, {0, 0, 1, 3}, 50] (* David Nacin, Mar 07 2012 *)
  • PARI
    concat([0,0], Vec(1/(1-2*x)/(1-x-x^2-x^3)+O(x^99))) \\ Charles R Greathouse IV, Feb 03 2015
    
  • Python
    def a(n, adict={0:0, 1:0, 2:1, 3:3}):
        if n in adict:
            return adict[n]
        adict[n]=3*a(n-1)-a(n-2)-a(n-3)-2*a(n-4)
        return adict[n] # David Nacin, Mar 07 2012
    
  • SageMath
    def A050231_list(prec):
        P.= PowerSeriesRing(QQ, prec)
        return P( x^3/((1-2*x)*(1-x-x^2-x^3)) ).list()
    a=A050231_list(41); a[1:] # G. C. Greubel, Jun 01 2025

Formula

a(n) = 2^n - tribonacci(n+3), see A000073. - Vladeta Jovovic, Feb 23 2003
G.f.: x^3/((1-2*x)*(1-x-x^2-x^3)). - Geoffrey Critzer, Jan 29 2009
a(n) = 2 * a(n-1) + 2^(n-4) - a(n-4) since we can add T or H to a sequence of n-1 flips which has HHH, and H to one which ends in THH and does not have HHH among the first (n-4) flips. - Toby Gottfried, Nov 20 2010
a(n) = 3*a(n-1) - a(n-2) - a(n-3) - 2*a(n-4), a(0)=0, a(1)=0, a(2)=1, a(3)=3. - David Nacin, Mar 07 2012

A057597 a(n) = -a(n-1) - a(n-2) + a(n-3), a(0)=0, a(1)=0, a(2)=1.

Original entry on oeis.org

0, 0, 1, -1, 0, 2, -3, 1, 4, -8, 5, 7, -20, 18, 9, -47, 56, 0, -103, 159, -56, -206, 421, -271, -356, 1048, -963, -441, 2452, -2974, 81, 5345, -8400, 3136, 10609, -22145, 14672, 18082, -54899, 51489, 21492, -127880, 157877, -8505, -277252, 443634, -174887, -545999, 1164520, -793408, -917111
Offset: 0

Views

Author

N. J. A. Sloane, Oct 06 2000

Keywords

Comments

Reflected (A074058) tribonacci numbers A000073: A000073(n) = a(1-n).
There is an alternative way to produce this sequence, from A000073, which is 0,0,1,1,2,4,7,13,24,44,... Call this {b(n)}. Taking x1 = (b(2))^2 - b(1)*b(3) = 0; x2 = (b(3))^2 - b(2)*b(4) = 1; x3 = (b(4))^2 - b(3)*b(5) = -1; x4 = 0, x5 = 2, we generate (0),0,1,-1,0,2,-3,1. - John McNamara, Jan 02 2004
Pisano period lengths: 1, 4, 13, 8, 31, 52, 48, 16, 39, 124, 110, 104, 168, 48, 403, 32, 96, 156, 360, 248, ... - R. J. Mathar, Aug 10 2012
The negative powers of the tribonacci constant t = A058265 are t^(-n) = a(n+1)*t^2 + b(n)*t + a(n+2)*1, for n >= 0, with b(n) = A319200(n) = -(a(n+1) - a(n)), for n >= 0. 1/t = t^2 - t - 1 = A192918. See the example in A319200 for the first powers. - Wolfdieter Lang, Oct 23 2018

References

  • Petho Attila, Posting to Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU), Oct 06 2000.

Crossrefs

Cf. A000073, A058265, A319200. First differences of A077908.

Programs

  • GAP
    a:=[0,0,1];;  for n in [4..55] do a[n]:=-a[n-1]-a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Oct 23 2018
  • Haskell
    a057597 n = a057597_list !! n
    a057597_list = 0 : 0 : 1 : zipWith3 (\x y z -> - x - y + z)
                   (drop 2 a057597_list) (tail a057597_list) a057597_list
    -- Reinhard Zumkeller, Oct 07 2012
    
  • Maple
    seq(coeff(series(x^2/(1+x+x^2-x^3),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    CoefficientList[Series[x^2/(1+x+x^2-x^3), {x, 0, 50}], x]
  • PARI
    {a(n) = polcoeff( if( n<0, x / ( 1 - x - x^2 - x^3), x^2 / ( 1 + x + x^2 - x^3) ) + x*O(x^abs(n)), abs(n))} /* Michael Somos, Sep 03 2007 */
    

Formula

G.f.: x^2/(1+x+x^2-x^3).
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x - x^2)/( x*(4*k+3 + x - x^2) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013
G.f. -x*T(1/x), where T is the g.f. of A000073. - Wolfdieter Lang, Oct 26 2018

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A048888 a(n) = Sum_{m=1..n} T(m,n+1-m), array T as in A048887.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 23, 42, 76, 139, 255, 471, 873, 1627, 3044, 5718, 10779, 20387, 38673, 73561, 140267, 268065, 513349, 984910, 1892874, 3643569, 7023561, 13557019, 26200181, 50691977, 98182665, 190353369, 369393465, 717457655
Offset: 0

Views

Author

Keywords

Comments

From Marc LeBrun, Dec 12 2001: (Start)
Define a "numbral arithmetic" by replacing addition with binary bitwise inclusive-OR (so that [3] + [5] = [7] etc.) and multiplication becomes shift-&-OR instead of shift-&-add (so that [3] * [3] = [7] etc.). [d] divides [n] means there exists an [e] with [d] * [e] = [n]. For example the six divisors of [14] are [1], [2], [3], [6], [7] and [14]. Then it appears that this sequence gives the number of proper divisors of [2^n-1]. Conjecture confirmed by Richard C. Schroeppel, Dec 14 2001. (End)
The number of "prime endofunctions" on n points, meaning the cardinality of the subset of the A001372(n) mappings (or mapping patterns) up to isomorphism from n (unlabeled) points to themselves (endofunctions) which are neither the sum of prime endofunctions (i.e., whose disjoint connected components are prime endofunctions) nor the categorical product of prime endofunctions. The n for which a(n) is prime (n such that the number of prime endofunctions on n points is itself prime) are 2, 4, 5, 6, 9, 13, 19, ... - Jonathan Vos Post, Nov 19 2006
For n>=1, compositions p(1)+p(2)+...+p(m)=n such that p(k)<=p(1)+1, see example. - Joerg Arndt, Dec 28 2012

Examples

			From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(6)=23 compositions p(1)+p(2)+...+p(m)=6 such that p(k)<=p(1)+1:
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 2 1 1 ]
[ 5]  [ 1 1 2 2 ]
[ 6]  [ 1 2 1 1 1 ]
[ 7]  [ 1 2 1 2 ]
[ 8]  [ 1 2 2 1 ]
[ 9]  [ 2 1 1 1 1 ]
[10]  [ 2 1 1 2 ]
[11]  [ 2 1 2 1 ]
[12]  [ 2 1 3 ]
[13]  [ 2 2 1 1 ]
[14]  [ 2 2 2 ]
[15]  [ 2 3 1 ]
[16]  [ 3 1 1 1 ]
[17]  [ 3 1 2 ]
[18]  [ 3 2 1 ]
[19]  [ 3 3 ]
[20]  [ 4 1 1 ]
[21]  [ 4 2 ]
[22]  [ 5 1 ]
[23]  [ 6 ]
(End)
		

Crossrefs

Programs

  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=0,N,  (1-x^n)*x^n/(1-2*x+x^(n+1)) ) + 'c0;
    v = Vec(gf);  v[1]-='c0;  v
    /* Joerg Arndt, Apr 14 2013 */

Formula

G.f.: Sum_{k>0} x^k*(1-x^k)/(1-2*x+x^(k+1)). - Vladeta Jovovic, Feb 25 2003
a(m) = Sum_{ n=2..m+1 } Fn(m) where Fn is a Fibonacci n-step number (Fibonacci, tetranacci, etc.) indexed as in A000045, A000073, A000078. - Gerald McGarvey, Sep 25 2004
Previous Showing 101-110 of 401 results. Next