cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 100 results. Next

A000288 Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 13, 25, 49, 94, 181, 349, 673, 1297, 2500, 4819, 9289, 17905, 34513, 66526, 128233, 247177, 476449, 918385, 1770244, 3412255, 6577333, 12678217, 24438049, 47105854, 90799453, 175021573, 337364929, 650291809, 1253477764
Offset: 0

Views

Author

Keywords

Comments

The "standard" Tetranacci numbers with initial terms (0,0,0,1) are listed in A000078. - M. F. Hasler, Apr 20 2018
For n>=0: a(n+2) is the number of length-n words with letters {0,1,2,3} where the letter x is followed by at least x zeros, see Fxtbook link. [Joerg Arndt, Apr 08 2011]
Satisfies Benford's law [see A186191]. - N. J. A. Sloane, Feb 09 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 4*x^4 + 7*x^5 + 13*x^6 + 25*x^7 + 49*x^8 + ...
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A060455.
Cf. A000078: Tetranacci numbers with a(0) = a(1) = a(2) = 0, a(3) = 1.

Programs

  • Maple
    A000288:=(-1+z**2+2*z**3)/(-1+z**2+z**3+z+z**4); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[0] = a[1] = a[2] = a[3] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4]; Table[ a[n], {n, 0, 34}] (* Robert G. Wilson v, Oct 27 2005 *)
    LinearRecurrence[{1,1,1,1},{1,1,1,1},30] (* Harvey P. Dale, May 23 2011 *)
    a[ n_] := If[ n < 0, SeriesCoefficient[ x (-2 - x + x^3) / (1 + x + x^2 + x^3 - x^4), {x, 0, -n}], SeriesCoefficient[ (1 - x^2 - 2 x^3) / (1 - x - x^2 - x^3 - x^4), {x, 0, n}]]; (* Michael Somos, Aug 15 2015 *)
  • Maxima
    A000288[0]:1$ A000288[1]:1$ A000288[2]:1$ A000288[3]:1$ A000288[n]:=A000288[n-1] + A000288[n-2]+ A000288[n-3] + A000288[n-4]$ makelist(A000288[n],n,0,30); /* Martin Ettl, Oct 25 2012 */
    
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( x*(-2 - x + x^3) / (1 + x + x^2 + x^3 - x^4) + x*O(x^n), n), polcoeff( (1 - x^2 - 2*x^3) / (1 - x - x^2 - x^3 - x^4) + x*O(x^n), n))}; /* Michael Somos, Jan 04 2013 */

Formula

[a(n), a(n+1), a(n+2), a(n+3)]' = (M^n)*[1 1 1 1]', where M = the 4 X 4 matrix [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / 1 1 1 1]. E.g. [7 13 25 49]' = (M^5)*[1 1 1 1]' = [a(5), a(6), a(7), a(8)]'. Here the prime denotes transpose. - Gary W. Adamson, Feb 22 2004.
a(0) = a(1) = a(2) = a(3) = 1, a(4) = 4, a(n) = 2*a(n-1) - a(n-5). - Vincenzo Librandi, Dec 21 2010
a(n) = -2*A000078(n)-A000078(n+1)+A000078(n+3). - R. J. Mathar, Apr 07 2011
G.f.: (1 - x^2 - 2*x^3) / (1 - x - x^2 - x^3 - x^4) = 1 / (1 - x / (1 - 3*x^3 / (1 - x^2 / (1 + x / (1 - x))))). - Michael Somos, May 12 2012
G.f. A(x) = 1 + x / (1 - x / (1 - 3 * x^2 / (1 + 2 * x^2))). - Michael Somos, Jan 04 2013

Extensions

More terms from Robert G. Wilson v, Oct 27 2005

A001630 Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with a(0)=a(1)=0, a(2)=1, a(3)=2.

Original entry on oeis.org

0, 0, 1, 2, 3, 6, 12, 23, 44, 85, 164, 316, 609, 1174, 2263, 4362, 8408, 16207, 31240, 60217, 116072, 223736, 431265, 831290, 1602363, 3088654, 5953572, 11475879, 22120468, 42638573, 82188492, 158423412, 305370945, 588621422, 1134604271, 2187020050
Offset: 0

Views

Author

Keywords

Comments

Also (with a different offset), coordination sequence for (4,infinity,infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
Apparently for n>=2 the number of 1-D walks of length n-2 using steps +1, +3 and -1, avoiding consecutive -1 steps. - David Scambler, Jul 15 2013
From Elkhan Aday and Greg Dresden, Jun 24 2024: (Start)
For n > 1, a(n) is the number of ways to tile a skew double-strip of n-1 cells with one extra initial cell, using squares and all possible "dominoes". Here is the skew double-strip corresponding to n=12, with 11 cells:
_ ___ _ ___ _
| | | | | |
_ _|_|___|_|___|_|
| | | | | | |
|_|___|_|___|_|___|,
and here are the three possible "domino" tiles:
_ _
| | | |
| | | | | |
|_|, |_|, |_____|.
As an example, here is one of the a(12) = 609 ways to tile the skew double-strip of 11 cells:
_ _______ _____
| | | | | |
___|_ |_|_ | _| _|
| | | | | |
|_____|___|_|___|_|. (End)

Examples

			G.f. = x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 23*x^7 + 44*x^8 + 85*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[0, 0, 1, 2]; [n le 4 select I[n] else Self(n-1)+ Self(n-2) + Self(n-3) + Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jan 29 2013
    
  • Maple
    a:= proc(n) option operator; local M; M := Matrix(4, (i,j)-> if (i=j-1) or j=1 then 1 else 0 fi)^n; M[1,4]+M[1,3] end; seq (a(n), n=0..34); # Alois P. Heinz, Aug 01 2008
  • Mathematica
    a=0; b=0; c=1; d=2; lst={a, b, c, d}; Do[e=a+b+c+d; AppendTo[lst, e]; a=b; b=c; c=d; d=e, {n, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 30 2008 *)
    RecurrenceTable[{a[0] == a[1] == 0, a[2] == 1, a[3] == 2, a[n] == a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4]}, a, {n, 35}] (* or *) a = {0, 0, 1, 2}; Do[AppendTo[a, a[[-1]] + a[[-2]] + a[[-3]] + a[[-4]]], {35}]; a (* Bruno Berselli, Jan 29 2013 *)
    CoefficientList[Series[- x^2 * (1 + x)/(- 1 + x + x^2 + x^3 + x^4), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 29 2013 *)
    LinearRecurrence[{1,1,1,1},{0,0,1,2},40] (* Harvey P. Dale, Aug 25 2013 *)
  • PARI
    concat([0, 0], Vec(-x^2*(1+x)/(-1+x+x^2+x^3+x^4) + O(x^50))) \\ Michel Marcus, Dec 30 2015

Formula

G.f.: -x^2*(1+x)/(-1+x+x^2+x^3+x^4). [Simon Plouffe in his 1992 dissertation]
a(n) = A000078(n) + A000078(n+1) = a(n-1) + A000078(n+1) - A000078(n-1). - Henry Bottomley
a(n) = 2*a(n-1) - a(n-5) with n>4, a(0)=a(1)=0, a(2)=1, a(3)=2, a(4)=3. - Vincenzo Librandi, Dec 21 2010
G.f.: x^2 + x^3*G(0) where G(k) = 2 + x*(1 + x + x^2 + (1+x)*(1+x^2)*G(k+1)). - Sergei N. Gladkovskii, Jan 27 2013 [Edited by Michael Somos, Nov 12 2013]

A001631 Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with initial conditions a(0..3) = (0, 0, 1, 0).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 4, 7, 14, 27, 52, 100, 193, 372, 717, 1382, 2664, 5135, 9898, 19079, 36776, 70888, 136641, 263384, 507689, 978602, 1886316, 3635991, 7008598, 13509507, 26040412, 50194508, 96753025, 186497452, 359485397, 692930382, 1335666256, 2574579487
Offset: 0

Views

Author

Keywords

Comments

The "standard" tetranacci numbers with initial terms (0,0,0,1) are listed in A000078.
Starting (1, 2, 4, ...) is the INVERT transform of the cyclic sequence (1, 1, 1, 0, (repeat) ...); equivalent to the statement that (1, 2, 4, ...) corresponding to n = (1, 2, 3, ...) represents the numbers of ordered compositions of n using terms in the set "not multiples of four". - Gary W. Adamson, May 13 2013
a(n+4) equals the number of n-length binary words avoiding runs of zeros of lengths 4i+3, (i=0,1,2,...). - Milan Janjic, Feb 26 2015
a(n) is the number of ways to tile a skew double-strip of n-2 cells using squares and all possible "dominos", as seen in the comments in A000078, but with the added provision that the first tile (in the lower left corner) must be a domino. For reference, here is the skew double-strip corresponding to n=14, with 12 cells:
_ ___ _ ___ _ ___
| | | | | | |
|__|___|_|___| |___|
| | | | | | |
|_|___|_|___|_|___|,
and here are the three possible "domino" tiles:
_ _
| | | |
| | | | | |
|_|, |_|, |_____|. - Greg Dresden and Ruotong Li, Jun 05 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Absolute values of first differences of standard tetranacci numbers A000078.
Cf. A000288 (variant: starting with 1, 1, 1, 1).
Cf. A000336 (variant: sum replaced by product).

Programs

  • Magma
    I:=[0,0,1,0]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
  • Maple
    A001631:=(-1+z)/(-1+z+z**2+z**3+z**4); # conjectured by Simon Plouffe in his 1992 dissertation
    a:= n-> (Matrix([[0,-1,2,-1]]). Matrix(4, (i,j)-> `if`(i=j-1 or j=1, 1, 0))^n)[1,1]: seq(a(n), n=0..35); # Alois P. Heinz, Aug 01 2008
  • Mathematica
    LinearRecurrence[{1, 1, 1, 1}, {0, 0, 1, 0}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
    CoefficientList[Series[((-1+x) x^2)/(-1+x+x^2+x^3+x^4),{x,0,50}],x] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,1,1]^n)[1,3] \\ Charles R Greathouse IV, Apr 08 2016, simplified by M. F. Hasler, Apr 20 2018
    
  • PARI
    x='x+O('x^30); concat([0,0], Vec(((x-1)*x^2)/(x^4+x^3+x^2+x-1))) \\ G. C. Greubel, Jan 09 2018
    

Formula

G.f.: ((x-1)*x^2)/(x^4+x^3+x^2+x-1). - Harvey P. Dale, Oct 21 2011

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 31 2000
Edited by M. F. Hasler, Apr 20 2018

A073817 Tetranacci numbers with different initial conditions: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) starting with a(0)=4, a(1)=1, a(2)=3, a(3)=7.

Original entry on oeis.org

4, 1, 3, 7, 15, 26, 51, 99, 191, 367, 708, 1365, 2631, 5071, 9775, 18842, 36319, 70007, 134943, 260111, 501380, 966441, 1862875, 3590807, 6921503, 13341626, 25716811, 49570747, 95550687, 184179871, 355018116, 684319421, 1319068095, 2542585503
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 12 2002

Keywords

Comments

These tetranacci numbers follow the same pattern as Lucas and generalized tribonacci(A001644) numbers: Binet's formula is a(n) = r1^n + r2^n + r3^n + r4^n, with r1, r2, r3, r4 roots of the characteristic polynomial.
For n >= 4, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain four consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). For example, a(4)=15 because only the sequences 1110, 1101, 1011, 0111, 0011, 0101, 1001, 1010, 0110, 1100, 0001, 0010, 0100, 1000, 0000 avoid four consecutive ones on a circle. (For n=1,2,3 the statement is still true provided we allow the sequence to wrap around itself on a circle. For example, a(2)=3 because only the sequences 00, 01, 10 avoid four consecutive ones when wrapped around on a circle.) - Petros Hadjicostas, Dec 18 2016

Crossrefs

Cf. A000078, A001630, A001644, A000032, A106295 (Pisano periods). Two other versions: A001648, A074081.

Programs

  • GAP
    a:=[4,1,3,7];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+a[n-3] +a[n-4]; od; a; # G. C. Greubel, Feb 19 2019
  • Magma
    I:=[4,1,3,7]; [n le 4 select I[n] else Self(n-1) +Self(n-2) +Self(n-3) +Self(n-4): n in [1..40]]; // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    a[0]=4; a[1]=1; a[2]=3; a[3]=7; a[4]=15; a[n_]:= 2*a[n-1] -a[n-5]; Array[a, 34, 0]
    CoefficientList[Series[(4-3x-2x^2-x^3)/(1-x-x^2-x^3-x^4), {x, 0, 40}], x]
    LinearRecurrence[{1,1,1,1},{4,1,3,7},40] (* Harvey P. Dale, Jun 01 2015 *)
  • PARI
    Vec((4-3*x-2*x^2-x^3)/(1-x-x^2-x^3-x^4) + O(x^40)) \\ Michel Marcus, Jan 29 2016
    
  • Sage
    ((4-3*x-2*x^2-x^3)/(1-x-x^2-x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 19 2019
    

Formula

G.f.: (4 - 3*x - 2*x^2 - x^3)/(1 - x - x^2 - x^3 - x^4).
a(n) = 2*a(n-1) - a(n-5), with a(0)=4, a(1)=1, a(2)=3, a(3)=7, a(4)=15. - Vincenzo Librandi, Dec 20 2010
a(n) = A000078(n+2) + 2*A000078(n+1) + 3*A000078(n) + 4*A000078(n-1). - Advika Srivastava, Aug 22 2019
a(n) = 8*a(n-3) - a(n-5) - 2*a(n-6) - 4*a(n-7). - Advika Srivastava, Aug 25 2019
a(n) = Trace(M^n), where M is the 4 X 4 matrix [0, 0, 0, 1; 1, 0, 0, 1; 0, 1, 0, 1; 0, 0, 1, 1], the companion matrix to the monic polynomial x^4 - x^3 - x^2 - x - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Dec 31 2022
a(n) = Sum_{r root of x^4-x^3-x^2-x-1} r^n. - Fabian Pereyra, Feb 28 2025

Extensions

Typo in definition corrected by Vincenzo Librandi, Dec 20 2010

A074048 Pentanacci numbers with initial conditions a(0)=5, a(1)=1, a(2)=3, a(3)=7, a(4)=15.

Original entry on oeis.org

5, 1, 3, 7, 15, 31, 57, 113, 223, 439, 863, 1695, 3333, 6553, 12883, 25327, 49791, 97887, 192441, 378329, 743775, 1462223, 2874655, 5651423, 11110405, 21842481, 42941187, 84420151, 165965647, 326279871, 641449337, 1261056193, 2479171199, 4873922247
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 14 2002

Keywords

Comments

These pentanacci numbers follow the same pattern as Lucas, generalized tribonacci(A001644) and generalized tetranacci (A073817) numbers: Binet's formula is a(n)=r1^n+r^2^n+r3^n+r4^n+r5^n, with r1, r2, r3, r4, r5 roots of the characteristic polynomial. a(n) is also the trace of A^n, where A is the pentamatrix ((1,1,0,0,0),(1,0,1,0,0),(1,0,0,1,0),(1,0,0,0,1),(1,0,0,0,0)).
For n >= 5, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain five consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). (For n=1,2,3,4 the statement is still true provided we allow the sequence to wrap around itself on a circle). - Petros Hadjicostas, Dec 18 2016
a(3407) has 1001 decimal digits. - Michael De Vlieger, Dec 28 2016

Crossrefs

Cf. A000078, A001630, A001644, A000032, A073817, A106297 (Pisano Periods).
Essentially the same as A023424.
Cf. A106273.

Programs

  • Mathematica
    CoefficientList[Series[(5-4*x-3*x^2-2*x^3-x^4)/(1-x-x^2-x^3-x^4-x^5), {x, 0, 30}], x]
    LinearRecurrence[{1, 1, 1, 1, 1}, {5, 1, 3, 7, 15}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    polsym(polrecip(1-x-x^2-x^3-x^4-x^5),33) \\ Joerg Arndt, Jan 28 2019

Formula

a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5).
G.f.: (5-4*x-3*x^2-2*x^3-x^4) / (1-x-x^2-x^3-x^4-x^5).
a(n) = 2*a(n-1) -a(n-6), n>5. [Vincenzo Librandi, Dec 20 2010]
For k>0 and n>=0, a(n+5*k) = a(k)*a(n+4*k) - A123127(k-1)*a(n+3*k) + A123126(k-1)*a(n+2*k) - A074062(k)*a(n+k) + a(n). For example, if k=4, n=3, we have a(n+5*k) = a(23) = 5651423, a(4)*a(19) - A123127(3)*a(15) + A123126(3)*a(1695) - A074062(4)*a(7) + a(3) = (15)*(378329) - (1)*(25327) + (1)*(1695) - (-1)*(113) + (7) = 5651423. - Kai Wang, Sep 13 2020
From Kai Wang, Dec 16 2020: (Start)
For k >= 0,
| a(k+4) a(k+5) a(k+6) a(k+7) a(k+8) |
| a(k+3) a(k+4) a(k+5) a(k+6) a(k+7) |
det | a(k+2) a(k+3) a(k+4) a(k+5) a(k+6) | = 9584 = A106273(5).
| a(k+1) a(k+2) a(k+3) a(k+4) a(k+5) |
| a(k) a(k+1) a(k+2) a(k+3) a(k+4) |
(End)

A066178 Number of binary bit strings of length n with no block of 8 or more 0's. Nonzero heptanacci numbers, A122189.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936, 15808, 31489, 62725, 124946, 248888, 495776, 987568, 1967200, 3918592, 7805695, 15548665, 30972384, 61695880, 122895984, 244804400, 487641600
Offset: 0

Views

Author

Len Smiley, Dec 14 2001

Keywords

Comments

Analogous bit string description and o.g.f. (1-x)/(1-2x+x^{k+1}) works for nonzero k-nacci numbers.
Compositions of n into parts <= 7. - Joerg Arndt, Aug 06 2012

Crossrefs

Cf. A000045 (k=2, Fibonacci numbers), A000073 (k=3, tribonacci) A000078 (k=4, tetranacci) A001591 (k=5, pentanacci) A001592 (k=6, hexanacci), A122189 (k=7, heptanacci).
Row 7 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).

Programs

  • Mathematica
    a[0] = a[1] = 1; a[2] = 2; a[3] = 4; a[4] = 8; a[5] = 16; a[6] = 32; a[7] = 64; a[n_] := 2*a[n - 1] - a[n - 8]; Array[a, 31, 0]
    CoefficientList[ Series[(1 - x)/(1 - 2 x + x^8), {x, 0, 30}], x]
    LinearRecurrence[{1,1,1,1,1,1,1},{1,1,2,4,8,16,32},40] (* Harvey P. Dale, Nov 16 2014 *)

Formula

O.g.f.: 1/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7).
a(n) = Sum_{i=n-7..n-1} a(i).
a(n) = round((r-1)/((t+1)*r - 2*t) * r^(n-1)), where r is the heptanacci constant, the real root of the equation x^(t+1) - 2*x^t + 1 = 0 which is greater than 1. The formula could also be used for a k-step Fibonacci sequence if r is replaced by the k-bonacci constant, as in A000045, A000073, A000078, A001591, A001592. - Zhao Hui Du, Aug 24 2008
a(n) = 2*a(n-1) - a(n-8). - Vincenzo Librandi, Dec 20 2010

Extensions

Definition corrected by Vincenzo Librandi, Dec 20 2010

A092921 Array F(k, n) read by descending antidiagonals: k-generalized Fibonacci numbers in row k >= 1, starting (0, 1, 1, ...), for column n >= 0.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 2, 1, 1, 0, 1, 5, 4, 2, 1, 1, 0, 1, 8, 7, 4, 2, 1, 1, 0, 1, 13, 13, 8, 4, 2, 1, 1, 0, 1, 21, 24, 15, 8, 4, 2, 1, 1, 0, 1, 34, 44, 29, 16, 8, 4, 2, 1, 1, 0, 1, 55, 81, 56, 31, 16, 8, 4, 2, 1, 1, 0, 1, 89, 149, 108, 61, 32, 16, 8, 4, 2, 1, 1, 0
Offset: 0

Views

Author

Ralf Stephan, Apr 17 2004

Keywords

Comments

For all k >= 1, the k-generalized Fibonacci number F(k,n) satisfies the recurrence obtained by adding more terms to the recurrence of the Fibonacci numbers.
The number of tilings of an 1 X n rectangle with tiles of size 1 X 1, 1 X 2, ..., 1 X k is F(k,n).
T(k,n) is the number of 0-balanced ordered trees with n edges and height k (height is the number of edges from root to a leaf). - Emeric Deutsch, Jan 19 2007
Brlek et al. (2006) call this table "number of psp-polyominoes with flat bottom". - N. J. A. Sloane, Oct 30 2018

Examples

			From _Peter Luschny_, Apr 03 2021: (Start)
Array begins:
                n = 0  1  2  3  4  5   6   7   8    9   10
  -------------------------------------------------------------
  [k=1, mononacci ] 0, 1, 1, 1, 1, 1,  1,  1,  1,   1,   1, ...
  [k=2, Fibonacci ] 0, 1, 1, 2, 3, 5,  8, 13, 21,  34,  55, ...
  [k=3, tribonacci] 0, 1, 1, 2, 4, 7, 13, 24, 44,  81, 149, ...
  [k=4, tetranacci] 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, ...
  [k=5, pentanacci] 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, ...
  [k=6]             0, 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, ...
  [k=7]             0, 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, ...
  [k=8]             0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, ...
  [k=9]             0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, ...
Note that the first parameter in F(k, n) refers to rows, and the second parameter refers to columns. This is always the case. Only the usual naming convention for the indices is not adhered to because it is common to call the row sequences k-bonacci numbers. (End)
.
From _Peter Luschny_, Aug 12 2015: (Start)
As a triangle counting compositions of n with largest part k:
  [n\k]| [0][1] [2] [3] [4][5][6][7][8][9]
   [0] | [0]
   [1] | [0, 1]
   [2] | [0, 1,  1]
   [3] | [0, 1,  1,  1]
   [4] | [0, 1,  2,  1,  1]
   [5] | [0, 1,  3,  2,  1, 1]
   [6] | [0, 1,  5,  4,  2, 1, 1]
   [7] | [0, 1,  8,  7,  4, 2, 1, 1]
   [8] | [0, 1, 13, 13,  8, 4, 2, 1, 1]
   [9] | [0, 1, 21, 24, 15, 8, 4, 2, 1, 1]
For example for n=7 and k=3 we have the 7 compositions [3, 3, 1], [3, 2, 2], [3, 2, 1, 1], [3, 1, 3], [3, 1, 2, 1], [3, 1, 1, 2], [3, 1, 1, 1, 1]. (End)
		

Crossrefs

Columns converge to A166444: each column n converges to A166444(n) = 2^(n-2).
Rows 1-8 are (shifted) A057427, A000045, A000073, A000078, A001591, A001592, A066178, A079262.
Essentially a reflected version of A048887.
See A048004 and A126198 for closely related arrays.
Cf. A066099.

Programs

  • Maple
    F:= proc(k, n) option remember; `if`(n<2, n,
          add(F(k, n-j), j=1..min(k,n)))
        end:
    seq(seq(F(k, d+1-k), k=1..d+1), d=0..12);  # Alois P. Heinz, Nov 02 2016
    # Based on the above function:
    Arow := (k, len) -> seq(F(k, j), j = 0..len):
    seq(lprint(Arow(k, 14)), k = 1..10); # Peter Luschny, Apr 03 2021
  • Mathematica
    F[k_, n_] := F[k, n] = If[n<2, n, Sum[F[k, n-j], {j, 1, Min[k, n]}]];
    Table[F[k, d+1-k], {d, 0, 12}, {k, 1, d+1}] // Flatten (* Jean-François Alcover, Jan 11 2017, translated from Maple *)
  • PARI
    F(k,n)=if(n<2,if(n<1,0,1),sum(i=1,k,F(k,n-i)))
    
  • PARI
    T(m,n)=!!n*(matrix(m,m,i,j,j==i+1||i==m)^(n+m-2))[1,m] \\ M. F. Hasler, Apr 20 2018
    
  • PARI
    F(k,n) = if(n==0,0, polcoeff(lift(Mod('x, Pol(vector(k+1,i, if(i==1,1,-1))))^(n+k-2)), k-1)); \\ Kevin Ryde, Jun 05 2020
    
  • Sage
    # As a triangle of compositions of n with largest part k.
    C = lambda n,k: Compositions(n, max_part=k, inner=[k]).cardinality()
    for n in (0..9): [C(n,k) for k in (0..n)] # Peter Luschny, Aug 12 2015

Formula

F(k,n) = F(k,n-1) + F(k,n-2) + ... + F(k,n-k); F(k,1) = 1 and F(k,n) = 0 for n <= 0.
G.f.: x/(1-Sum_{i=1..k} x^i).
F(k,n) = 2^(n-2) for 1 < n <= k+1. - M. F. Hasler, Apr 20 2018
F(k,n) = Sum_{j=0..floor(n/(k+1))} (-1)^j*((n - j*k) + j + delta(n,0))/(2*(n - j*k) + delta(n,0))*binomial(n - j*k, j)*2^(n-j*(k+1)), where delta denotes the Kronecker delta (see Corollary 3.2 in Parks and Wills). - Stefano Spezia, Aug 06 2022

A048887 Array T read by antidiagonals, where T(m,n) = number of compositions of n into parts <= m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 8, 1, 1, 2, 4, 8, 13, 13, 1, 1, 2, 4, 8, 15, 24, 21, 1, 1, 2, 4, 8, 16, 29, 44, 34, 1, 1, 2, 4, 8, 16, 31, 56, 81, 55, 1, 1, 2, 4, 8, 16, 32, 61, 108, 149, 89, 1, 1, 2, 4, 8, 16, 32, 63, 120, 208, 274, 144, 1
Offset: 1

Views

Author

Keywords

Comments

Taking finite differences of array columns from the top down, we obtain (1; 1,1; 1,2,1; 1,4,2,1; ...) = A048004 rows. - Gary W. Adamson, Aug 20 2010
T(m,n) is the number of binary words of length n-1 with < m consecutive 1's. - Geoffrey Critzer, Sep 02 2012

Examples

			T(2,5) counts 11111, 1112, 1121, 1211, 2111, 122, 212, 221, where "1211" abbreviates the composition 1+2+1+1.
These eight compositions correspond respectively to: {0,0,0,0}, {0,0,0,1}, {0,0,1,0}, {0,1,0,0}, {1,0,0,0}, {0,1,0,1}, {1,0,0,1}, {1,0,1,0} per the bijection given by _N. J. A. Sloane_ in A048004. - _Geoffrey Critzer_, Sep 02 2012
The array begins:
  1,  1,  1,  1,  1,  1,  1, ...
  1,  2,  3,  5,  8, 13, ...
  1,  2,  4,  7, 13, ...
  1,  2,  4,  8, ...
  1,  2,  4, ...
  1,  2, ...
  1, ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978, p. 154.

Crossrefs

Rows: A000045 (Fibonacci), A000073 (tribonacci), A000078 (tetranacci), etc.
Essentially a reflected version of A092921. See A048004 and A126198 for closely related arrays.

Programs

  • Maple
    G := t->(1-z)/(1-2*z+z^(t+1)): T := (m,n)->coeff(series(G(m),z=0,30),z^n): matrix(7,12,T);
    # second Maple program:
    T:= proc(m, n) option remember; `if`(n=0 or m=1, 1,
          add(T(m, n-j), j=1..min(n, m)))
        end:
    seq(seq(T(1+d-n, n), n=1..d), d=1..14); # Alois P. Heinz, May 21 2013
  • Mathematica
    Table[nn=10;a=(1-x^k)/(1-x);b=1/(1-x);c=(1-x^(k-1))/(1-x); CoefficientList[ Series[a b/(1-x^2 b c), {x,0,nn}],x],{k,1,nn}]//Grid  (* Geoffrey Critzer, Sep 02 2012 *)
    T[m_, n_] := T[m, n] = If[n == 0 || m == 1, 1, Sum[T[m, n-j], {j, 1, Min[n, m]}]]; Table[Table[T[1+d-n, n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Nov 12 2014, after Alois P. Heinz *)

Formula

G.f.: (1-z)/[1-2z+z^(t+1)].

A104144 a(n) = Sum_{k=1..9} a(n-k); a(8) = 1, a(n) = 0 for n < 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, 16272, 32512, 64960, 129792, 259328, 518145, 1035269, 2068498, 4132920, 8257696, 16499120, 32965728, 65866496, 131603200, 262947072, 525375999, 1049716729, 2097364960
Offset: 0

Views

Author

Jean Lefort (jlefort.apmep(AT)wanadoo.fr), Mar 07 2005

Keywords

Comments

Sometimes called the Fibonacci 9-step numbers.
For n >= 8, this gives the number of integers written without 0 in base ten, the sum of digits of which is equal to n-7. E.g., a(11) = 8 because we have the 8 numbers: 4, 13, 22, 31, 112, 121, 211, 1111.
The offset for this sequence is fairly arbitrary. - N. J. A. Sloane, Feb 27 2009

Crossrefs

Cf. A000045, A000073, A000078, A001591, A001592, A066178, A079262 (Fibonacci n-step numbers).
Cf. A255529 (Indices of primes in this sequence).

Programs

  • Maple
    for n from 0 to 50 do k(n):=sum((-1)^i*binomial(n-8-9*i,i)*2^(n-8-10*i),i=0..floor((n-8)/10))-sum((-1)^i*binomial(n-9-9*i,i)*2^(n-9-10*i),i=0..floor((n-9)/10)):od:seq(k(n),n=0..50);a:=taylor((z^8-z^9)/(1-2*z+z^(10)),z=0,51);for p from 0 to 50 do j(p):=coeff(a,z,p):od :seq(j(p),p=0..50); # Richard Choulet, Feb 22 2010
  • Mathematica
    a={1, 0, 0, 0, 0, 0, 0, 0, 0}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}]
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
    With[{nn=9},LinearRecurrence[Table[1,{nn}],Join[Table[0,{nn-1}],{1}],50]] (* Harvey P. Dale, Aug 17 2013 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,1,1,1,1,1,1,1,1]^n*[0;0;0;0;0;0;0;0;1])[1,1] \\ Charles R Greathouse IV, Jun 16 2015
    
  • PARI
    A104144(n,m=9)=(matrix(m,m,i,j,j==i+1||i==m)^n)[1,m] \\ M. F. Hasler, Apr 22 2018

Formula

a(n) = Sum_{k=1..9} a(n-k) for n > 8, a(8) = 1, a(n) = 0 for n=0..7.
G.f.: x^8/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9). - N. J. A. Sloane, Dec 04 2011
Another form of the g.f. f: f(z) = (z^8-z^9)/(1-2*z+z^(10)), then a(n) = Sum_((-1)^i*binomial(n-8-9*i,i)*2^(n-8-10*i), i=0..floor((n-8)/10))-Sum_((-1)^i*binomial(n-9-9*i,i)*2^(n-9-10*i), i=0..floor((n-9)/10)) with Sum_(alpha(i), i=m..n)=0 for m>n. - Richard Choulet, Feb 22 2010
From N. J. A. Sloane, Dec 04 2011: (Start)
Let b be the smallest root (in magnitude) of g(x) := 1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9, b = 0.50049311828655225605926845999420216157202861343888...
Let c = -b^8/g'(b) = 0.00099310812055463178382193226558248643030626601288701...
Then a(n) is the nearest integer to c/b^n. (End)

Extensions

Edited by N. J. A. Sloane, Aug 15 2006 and Nov 11 2006
Incorrect formula deleted by N. J. A. Sloane, Dec 04 2011
Name edited by M. F. Hasler, Apr 22 2018

A074584 Esanacci (hexanacci or "6-anacci") numbers.

Original entry on oeis.org

6, 1, 3, 7, 15, 31, 63, 120, 239, 475, 943, 1871, 3711, 7359, 14598, 28957, 57439, 113935, 225999, 448287, 889215, 1763832, 3498707, 6939975, 13766015, 27306031, 54163775, 107438335, 213112838, 422726969, 838513963, 1663261911, 3299217791, 6544271807
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 26 2002

Keywords

Comments

These esanacci numbers follow the same pattern as Lucas, generalized tribonacci (A001644), generalized tetranacci (A073817), and generalized pentanacci (A074048) numbers.
The closed form is a(n) = r1^n + r^2^n + r3^n + r4^n + r5^n + r6^n, with r1, r2, r3, r4, r5, r6 roots of the characteristic polynomial.
a(n) is also the trace of A^n, where A is the matrix ((1, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1), (1, 0, 0, 0, 0, 0)).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6) )); // G. C. Greubel, Apr 22 2019
    
  • Mathematica
    CoefficientList[Series[(6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6), {x, 0, 40}], x]
    LinearRecurrence[{1,1,1,1,1,1},{6,1,3,7,15,31},40] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    polsym(polrecip(1-x-x^2-x^3-x^4-x^5-x^6), 40) \\ G. C. Greubel, Apr 22 2019
    
  • Python
    def aupton(nn):
      alst = [6, 1, 3, 7, 15, 31]
      for n in range(6, nn+1): alst.append(sum(alst[n-6:n]))
      return alst[:nn+1]
    print(aupton(33)) # Michael S. Branicky, Jun 01 2021
  • Sage
    ((6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019
    

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6), a(0)=6, a(1)=1, a(2)=3, a(3)=7, a(4)=15, a(5)=31.
G.f.: (6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6).
a(n) = 2*a(n-1) - a(n-7) for n >= 7. - Vincenzo Librandi, Dec 20 2010
Previous Showing 21-30 of 100 results. Next