cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 693 results. Next

A005703 Number of n-node connected graphs with at most one cycle.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 19, 44, 112, 287, 763, 2041, 5577, 15300, 42419, 118122, 330785, 929469, 2621272, 7411706, 21010378, 59682057, 169859257, 484234165, 1382567947, 3952860475, 11315775161, 32430737380, 93044797486, 267211342954, 768096496093, 2209772802169
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of pseudotrees on n nodes. - Eric W. Weisstein, Jun 11 2012
Also unlabeled connected graphs covering n vertices with at most n edges. For this definition we have a(1) = 0 and possibly a(0) = 0. - Gus Wiseman, Feb 20 2024

Examples

			From _Gus Wiseman_, Feb 20 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 8 graphs:
  {}  .  {12}  {12,13}     {12,13,14}     {12,13,14,15}
               {12,13,23}  {12,13,24}     {12,13,14,25}
                           {12,13,14,23}  {12,13,24,35}
                           {12,13,24,34}  {12,13,14,15,23}
                                          {12,13,14,23,25}
                                          {12,13,14,23,45}
                                          {12,13,14,25,35}
                                          {12,13,24,35,45}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000055, A000081, A001429 (labeled A057500), A134964 (number of pseudoforests, labeled A133686).
The labeled version is A129271.
The connected complement is A140636, labeled A140638.
Non-connected: A368834 (labeled A367869) or A370316 (labeled A369191).
A001187 counts connected graphs, unlabeled A001349.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A062734 counts connected graphs by number of edges.

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}];
    a[0] = 0;
    b = Drop[Flatten[
        sol = SolveAlways[
          0 == Series[
            t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}],
          x]; Table[a[n], {n, 0, nn}] /. sol], 1];
    r[x_] := Sum[b[[n]] x^n, {n, 1, nn}]; c =
    Drop[Table[
        CoefficientList[
         Series[CycleIndex[DihedralGroup[n], s] /.
           Table[s[i] -> r[x^i], {i, 1, n}], {x, 0, nn}], x], {n, 3,
         nn}] // Total, 1];
    d[x_] := Sum[c[[n]] x^n, {n, 1, nn}]; CoefficientList[
    Series[r[x] - (r[x]^2 - r[x^2])/2 + d[x] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 17 2014 *)
  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(1 + g(1) + (g(2) - g(1)^2)/2 + sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2)}; \\ Andrew Howroyd and Washington Bomfim, May 15 2021

Formula

a(n) = A000055(n) + A001429(n).

Extensions

More terms from Vladeta Jovovic, Apr 19 2000 and from Michael Somos, Apr 26 2000
a(27) corrected and a(28) and a(29) computed by Washington Bomfim, May 14 2008

A185650 a(n) is the number of rooted trees with 2n vertices n of whom are leaves.

Original entry on oeis.org

1, 2, 8, 39, 214, 1268, 7949, 51901, 349703, 2415348, 17020341, 121939535, 885841162, 6511874216, 48359860685, 362343773669, 2736184763500, 20805175635077, 159174733727167, 1224557214545788, 9467861087020239, 73534456468877012, 573484090227222260
Offset: 1

Views

Author

Stepan Orevkov, Aug 29 2013

Keywords

Examples

			From _Gus Wiseman_, Nov 27 2022: (Start)
The a(1) = 1 through a(3) = 8 rooted trees:
  (o)  ((oo))  (((ooo)))
       (o(o))  ((o)(oo))
               ((o(oo)))
               ((oo(o)))
               (o((oo)))
               (o(o)(o))
               (o(o(o)))
               (oo((o)))
(End)
		

Crossrefs

The ordered version is A000891, ranked by A358579.
This is the central column of A055277.
These trees are ranked by A358578.
For height = internals we have A358587.
Square trees are counted by A358589.
A000081 counts rooted trees, ordered A000108.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internals, ordered A090181.

Programs

  • Mathematica
    terms = 23;
    m = 2 terms;
    T[, ] = 0;
    Do[T[x_, z_] = z x - x + x Exp[Sum[Series[1/k T[x^k, z^k], {x, 0, j}, {z, 0, j}], {k, 1, j}]] // Normal, {j, 1, m}];
    cc = CoefficientList[#, z]& /@ CoefficientList[T[x, z] , x];
    Table[cc[[2n+1, n+1]], {n, 1, terms}] (* Jean-François Alcover, Sep 14 2018 *)
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{-2}]==n/2&]],{n,2,10,2}] (* Gus Wiseman, Nov 27 2022 *)
  • PARI
    \\ here R is A055277 as vector of polynomials
    R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
    {my(A=R(2*30)); vector(#A\2, k, polcoeff(A[2*k],k))} \\ Andrew Howroyd, May 21 2018

Extensions

Terms a(20) and beyond from Andrew Howroyd, May 21 2018

A087803 Number of unlabeled rooted trees with at most n nodes.

Original entry on oeis.org

1, 2, 4, 8, 17, 37, 85, 200, 486, 1205, 3047, 7813, 20299, 53272, 141083, 376464, 1011311, 2732470, 7421146, 20247374, 55469206, 152524387, 420807242, 1164532226, 3231706871, 8991343381, 25075077710, 70082143979, 196268698287, 550695545884, 1547867058882
Offset: 1

Views

Author

Hugo Pfoertner, Oct 12 2003

Keywords

Comments

Number of equations (order conditions) that must be satisfied to achieve order n in the construction of a Runge-Kutta method for the numerical solution of an ordinary differential equation. - Hugo Pfoertner, Oct 12 2003

References

  • Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations, (1987) Wiley, Chichester
  • See link for more references.

Crossrefs

a(n) = Sum_(k=1..n) A000081(k).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= proc(n) option remember; b(n) +`if`(n<1, 0, a(n-1)) end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 21 2012
  • Mathematica
    b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[b[n - j]* DivisorSum[j, # *b[#]&], {j, 1, n-1}]/(n-1); a[1] = 1; a[n_] := a[n] = b[n] + a[n-1]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 10 2015, after Alois P. Heinz *)
    t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n]; Table[a[n], {n, 40}] (* Vladimir Reshetnikov, Aug 12 2016 *)
    Needs["NumericalDifferentialEquationAnalysis`"]
    Drop[Accumulate[Join[{0},ButcherTreeCount[20]]],1] (* Peter Luschny, Aug 18 2016 *)
  • PARI
    a000081(k) = local(A = x); if( k<1, 0, for( j=1, k-1, A /= (1 - x^j + x * O(x^k))^polcoeff(A, j)); polcoeff(A, k));
    a(n) = sum(k=1, n, a000081(k)) \\ Altug Alkan, Nov 10 2015
    
  • Sage
    def A087803_list(len):
        a, t = [1], [0,1]
        for n in (1..len-1):
            S = [t[n-k+1]*sum(d*t[d] for d in divisors(k)) for k in (1..n)]
            t.append(sum(S)//n)
            a.append(a[-1]+t[-1])
        return a
    A087803_list(20) # Peter Luschny, Aug 18 2016

Formula

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.664861031240097088000569... . - Vaclav Kotesovec, Sep 11 2014
In the asymptotics above the constant c = A187770 / (1 - 1 / A051491). - Vladimir Reshetnikov, Aug 12 2016

Extensions

Corrected and extended by Alois P. Heinz, Aug 21 2012
Renamed (old name is in comments) by Vladimir Reshetnikov, Aug 23 2016

A187770 Decimal expansion of Otter's asymptotic constant beta for the number of rooted trees.

Original entry on oeis.org

4, 3, 9, 9, 2, 4, 0, 1, 2, 5, 7, 1, 0, 2, 5, 3, 0, 4, 0, 4, 0, 9, 0, 3, 3, 9, 1, 4, 3, 4, 5, 4, 4, 7, 6, 4, 7, 9, 8, 0, 8, 5, 4, 0, 7, 9, 4, 0, 1, 1, 9, 8, 5, 7, 6, 5, 3, 4, 9, 3, 5, 4, 5, 0, 2, 2, 6, 3, 5, 4, 0, 0, 4, 2, 0, 4, 7, 6, 4, 6, 0, 5, 3, 7, 9, 8, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2013

Keywords

Comments

A000081(n) ~ 0.439924012571 * alpha^n * n^(-3/2), alpha = 2.95576528565199497... (see A051491)

Examples

			0.43992401257102530404090339143454476479808540794...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p.296
  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, p. 396.

Crossrefs

Programs

  • Mathematica
    digits = 87; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^(-k)]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1 + Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; RealDigits[b, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)

A316651 Number of series-reduced rooted trees with n leaves spanning an initial interval of positive integers.

Original entry on oeis.org

1, 2, 12, 112, 1444, 24086, 492284, 11910790, 332827136, 10546558146, 373661603588, 14636326974270, 628032444609396, 29296137817622902, 1476092246351259964, 79889766016415899270, 4622371378514020301740, 284719443038735430679268, 18601385258191195218790756
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(3) = 12 trees:
  (1(11)), (111),
  (1(12)), (2(11)), (112),
  (1(22)), (2(12)), (122),
  (1(23)), (2(13)), (3(12)), (123).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    a:= n-> add(add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1), k=1..n):
    seq(a(n), n=1..20);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
         Sum[Binomial[A[i, k] + j - 1, j] b[n - i*j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]];
    a[n_] := Sum[Sum[A[n, k-j]*(-1)^j*Binomial[k, j], {j, 0, k-1}], {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
  • PARI
    \\ here R(n,k) is A000669, A050381, A220823, ...
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v,[0]))[n])); v}
    seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018

Formula

From Vaclav Kotesovec, Sep 18 2019: (Start)
a(n) ~ c * d^n * n^(n-1), where d = 1.37392076830840090205551979... and c = 0.41435722857311602982846...
a(n) ~ 2*log(2)*A326396(n)/n. (End)

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 14 2018

A005347 First differences of A005579.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 8, 13, 20, 34, 53, 88, 143, 236, 387, 641, 1061, 1763, 2937, 4903, 8202, 13750, 23095, 38850, 65461, 110465, 186665, 315827, 535011, 907341, 1540416, 2617782, 4452846, 7581016, 12917486, 22027745, 37591270, 64196610
Offset: 0

Views

Author

N. J. A. Sloane, R. K. Guy, Apr 12 1988

Keywords

Comments

This is example 42 in Guy's paper. a(2)-a(8) are the same as the Fibonacci sequence A000045. Subsequent terms deviate from Fibonacci. - T. D. Noe, May 08 2006

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    prod = Interval[1]; k = k0 = 0; Join[{1, 1}, Table[While[Max[prod] <= n, k++; p = Prime[k]; prod = N[prod*p/(p - 1), 30]]; If[Min[prod] > n, If[k > 2, Print[k - k0] ]; k0 = k; k, "too few digits"], {n, 2, 39}] // Differences] (* Jean-François Alcover, Oct 07 2016, using T. D. Noe's code for A005579 *)

Formula

a(n) = A005579(n+1) - A005579(n) - T. D. Noe, May 08 2006

Extensions

More terms from Harvey P. Dale, Aug 07 2013
Offset changed to 0, a(0) prepended, and a(1) inserted by Amiram Eldar, Apr 18 2025

A137917 a(n) is the number of unlabeled graphs on n nodes whose components are unicyclic graphs.

Original entry on oeis.org

1, 0, 0, 1, 2, 5, 14, 35, 97, 264, 733, 2034, 5728, 16101, 45595, 129327, 368093, 1049520, 2999415, 8584857, 24612114, 70652441, 203075740, 584339171, 1683151508, 4852736072, 14003298194, 40441136815, 116880901512, 338040071375, 978314772989, 2833067885748, 8208952443400
Offset: 0

Views

Author

Washington Bomfim, Feb 24 2008

Keywords

Comments

a(n) is the number of simple unlabeled graphs on n nodes whose components have exactly one cycle. - Geoffrey Critzer, Oct 12 2012
Also the number of unlabeled simple graphs with n vertices and n edges such that it is possible to choose a different vertex from each edge. - Gus Wiseman, Jan 25 2024

Examples

			From _Gus Wiseman_, Jan 25 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 5 simple graphs:
  {}  .  .  {12,13,23}  {12,13,14,23}  {12,13,14,15,23}
                        {12,13,24,34}  {12,13,14,23,25}
                                       {12,13,14,23,45}
                                       {12,13,14,25,35}
                                       {12,13,24,35,45}
(End)
		

Crossrefs

The connected case is A001429.
Without the choice condition we have A001434, covering A006649.
For any number of edges we have A134964, complement A140637.
The labeled version is A137916.
The version with loops is A369145, complement A368835.
The complement is counted by A369201, labeled A369143, covering A369144.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable simple graphs, unlabeled A005703.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,3,nn}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]   (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{2}],{n}],Select[Tuples[#],UnsameQ@@#&]!={}&]]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)

Formula

a(n) = Sum_{1*j_1 + 2*j_2 + ... = n} (Product_{i=3..n} binomial(A001429(i) + j_i -1, j_i)). [F. Ruskey p. 79, (4.27) with n replaced by n+1, and a_i replaced by A001429(i)].
Euler transform of A001429. - Geoffrey Critzer, Oct 12 2012

Extensions

Edited by Washington Bomfim, Jun 27 2012
Terms a(30) and beyond from Andrew Howroyd, May 05 2018
Offset changed to 0 by Gus Wiseman, Jan 27 2024

A316473 Number of locally disjoint rooted trees with n nodes, meaning no branch overlaps any other (unequal) branch of the same root.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 44, 99, 233, 554, 1346, 3300, 8219, 20635, 52300, 133488, 343033, 886360, 2302133, 6005835
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Examples

			The a(5) = 9 locally disjoint rooted trees:
((((o))))
(((oo)))
((o(o)))
((ooo))
(o((o)))
(o(oo))
((o)(o))
(oo(o))
(oooo)
		

Crossrefs

Programs

  • Mathematica
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],Select[Tuples[#,2],UnsameQ@@#&&(Intersection@@#=!={})&]=={}&]];
    Table[Length[strut[n]],{n,15}]

Extensions

a(20) from Jinyuan Wang, Jun 20 2020

A298118 Number of unlabeled rooted trees with n nodes in which all positive outdegrees are odd.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 21, 40, 80, 159, 322, 657, 1356, 2816, 5896, 12407, 26267, 55861, 119331, 255878, 550665, 1188786, 2574006, 5588177, 12162141, 26529873, 57993624, 127020653, 278716336, 612617523, 1348680531, 2973564157, 6565313455, 14514675376
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2018

Keywords

Examples

			The a(6) = 6 trees: (((((o))))), (((ooo))), ((oo(o))), (oo((o))), (o(o)(o)), (ooooo).
		

Crossrefs

Programs

  • Mathematica
    orut[n_]:=orut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[orut/@c]]]/@Select[IntegerPartitions[n-1],OddQ[Length[#]]&]];
    Table[Length[orut[n]],{n,15}]

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.30984417428419893876754252289588812511559... and c = 0.5598122522173731208680575003383895445787... - Vaclav Kotesovec, Jun 04 2019

Extensions

a(24)-a(35) from Alois P. Heinz, Jan 12 2018

A324924 Irregular triangle read by rows giving the factorization of n into factors q(i) = prime(i)/i, i > 0.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 1, 2, 3, 5, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 4, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 4, 7, 1, 1, 1, 2, 2, 1, 1, 1, 8, 1, 1, 1, 2, 3, 1, 1, 1, 2, 4, 1, 1, 2, 3, 5, 1, 1, 2, 2, 9
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2019

Keywords

Comments

Row n is the multiset of Matula-Goebel numbers of all proper terminal subtrees of the rooted tree with Matula-Goebel number n. For example, the rooted tree with Matula-Goebel number 1362 is (o(o)((oo)(oo))), with proper terminal subtrees {o,o,o,o,o,o,(o),(oo),(oo),((oo)(oo))}, which have Matula-Goebel numbers {1,1,1,1,1,1,2,4,4,49}, which is row 1362, as required.

Examples

			Triangle begins:
  {}
  1
  1  2
  1  1
  1  2  3
  1  1  2
  1  1  4
  1  1  1
  1  1  2  2
  1  1  2  3
  1  2  3  5
  1  1  1  2
  1  1  2  6
  1  1  1  4
  1  1  2  2  3
  1  1  1  1
  1  1  4  7
  1  1  1  2  2
  1  1  1  8
  1  1  1  2  3
  1  1  1  2  4
  1  1  2  3  5
  1  1  2  2  9
For example, row 65 is {1,1,1,2,2,3,6} because 65 = q(1)^3 q(2)^2 q(3) q(6).
		

Crossrefs

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[difac[n],{n,30}]
Previous Showing 81-90 of 693 results. Next