cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 245 results. Next

A066466 Numbers having just one anti-divisor.

Original entry on oeis.org

3, 4, 6, 96, 393216
Offset: 1

Views

Author

Robert G. Wilson v, Jan 02 2002

Keywords

Comments

See A066272 for definition of anti-divisor.
Jon Perry calls these anti-primes.
A066272(a(n)) = 1.
From Max Alekseyev, Jul 23 2007; updated Jun 25 2025: (Start)
Except for a(2) = 4, the terms of A066466 have form 2^k*p where p is odd prime and both 2^(k+1)*p-1, 2^(k+1)*p+1 are prime (i.e., twin primes). In other words, this sequence, omitting 4, is a subsequence of A040040 containing elements of the form 2^k*p with prime p.
Furthermore, since 2^(k+1)*p-1, 2^(k+1)*p+1 must equal -1 and +1 modulo 3, the number 2^(k+1)*p must be 0 modulo 3, implying that p=3. Therefore every term, except 4, must be of the form 3*2^k such that 3*2^(k+1)-1, 3*2^(k+1)+1 are twin primes. In other words, k+1 belongs to the intersection of A002253 and A002235.
According to Ballinger and Keller's lists, there are no other such k up to 22*10^6. Therefore a(6) (if it exists) is greater than 3*2^(22*10^6) ~= 10^6622660. (End)
From Daniel Forgues, Nov 23 2009: (Start)
The 2 last known anti-primes seem to relate to the Fermat primes (coincidence?):
96 = 3 * 2^5 = 3 * 2^F_1 = 3 * 2^[2^(2^1) + 1] and
393216 = 3 * 2^17 = 3 * 2^F_2 = 3 * 2^[2^(2^2) + 1],
where F_k is the k-th Fermat prime. (End)

Crossrefs

Programs

  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n & ]; Select[ Range[10^5], Length[ antid[ # ]] == 1 & ]

Extensions

Edited by Max Alekseyev, Oct 13 2009

A070592 Largest prime factor of the n-th Fermat number F(n) = 2^(2^n) + 1.

Original entry on oeis.org

3, 5, 17, 257, 65537, 6700417, 67280421310721, 5704689200685129054721, 93461639715357977769163558199606896584051237541638188580280321
Offset: 0

Views

Author

Benoit Cloitre, May 12 2002

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 72.

Crossrefs

Programs

  • PARI
    a(n) = vecmax(factor(2^(2^n) + 1)[,1]); \\ Michel Marcus, Jul 05 2017

Formula

From Amiram Eldar, Oct 25 2024: (Start)
a(n) = A006530(A000215(n)).
a(n) > c * n * 2^n for n >= 1, where c is a positive absolute constant (Stewart, 1977). (End)

Extensions

Offset changed by Arkadiusz Wesolowski, Jul 09 2011

A080307 Multiples of the Fermat numbers 2^(2^n)+1.

Original entry on oeis.org

3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 21, 24, 25, 27, 30, 33, 34, 35, 36, 39, 40, 42, 45, 48, 50, 51, 54, 55, 57, 60, 63, 65, 66, 68, 69, 70, 72, 75, 78, 80, 81, 84, 85, 87, 90, 93, 95, 96, 99, 100, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 123, 125, 126, 129, 130, 132
Offset: 1

Views

Author

Matthew Vandermast, Feb 16 2003

Keywords

Comments

Since all the Fermat numbers are relatively prime to each other (see link), the probability that a given integer is not a multiple of the first k Fermat numbers is 2^((2^k)-1) / 2^(2^k)-1, the limit of which is 0.5 as k increases infinitely; therefore the probability that an integer is a Fermat multiple, as well as the probability that it is not, is 0.5.

Crossrefs

A095077 Primes with four 1-bits in their binary expansion.

Original entry on oeis.org

23, 29, 43, 53, 71, 83, 89, 101, 113, 139, 149, 163, 197, 263, 269, 277, 281, 293, 337, 353, 389, 401, 449, 523, 547, 593, 643, 673, 773, 1031, 1049, 1061, 1091, 1093, 1097, 1217, 1283, 1289, 1297, 1409, 1553, 1601, 2069, 2083, 2089, 2129
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Subsequence of A027699. First differs from A085448 at n = 19, where a(n)=337, while A085448 continues from there with 311, whose binary expansion has six 1-bits, not four. Cf. A095057.
Cf. A000215 (primes having two bits set), A081091 (three bits set).
Cf. A264908.

Programs

  • Mathematica
    Select[Prime[Range[320]], Plus@@IntegerDigits[#, 2] == 4 &] (* Alonso del Arte, Jan 11 2011 *)
    Select[ Flatten[ Table[2^i + 2^j + 2^k + 1, {i, 3, 11}, {j, 2, i - 1}, {k, j - 1}]], PrimeQ] (* Robert G. Wilson v, Jul 30 2016 *)
  • PARI
    bits1_4(x) = { nB = floor(log(x)/log(2)); z = 0;
    for(i=0,nB,if(bittest(x,i),z++;if(z>4,return(0););););
    if(z == 4, return(1);, return(0););};
    forprime(x=17,2129,if(bits1_4(x),print1(x, ", ");););
    \\ Washington Bomfim, Jan 11 2011
    
  • PARI
    is(n)=isprime(n) && hammingweight(n)==4 \\ Charles R Greathouse IV, Jul 30 2016
    
  • PARI
    list(lim)=my(v=List(),t); for(a=3,logint(lim\=1,2), for(b=2,a-1, for(c=1,b-1, t=1<lim, return(Vec(v))); if(isprime(t), listput(v,t))))); Vec(v) \\ Charles R Greathouse IV, Jul 30 2016
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def A095077_gen(): # generator of terms
        return filter(isprime,map(lambda s:int('1'+''.join(s)+'1',2),(s for l in count(2) for s in multiset_permutations('0'*(l-2)+'11'))))
    A095077_list = list(islice(A095077_gen(),30)) # Chai Wah Wu, Jul 19 2022

A123599 Smallest generalized Fermat prime of the form a^(2^n) + 1, where base a>1 is an integer; or -1 if no such prime exists.

Original entry on oeis.org

3, 5, 17, 257, 65537, 185302018885184100000000000000000000000000000001
Offset: 0

Views

Author

Alexander Adamchuk, Nov 14 2006

Keywords

Comments

First 5 terms {3, 5, 17, 257, 65537} = A019434 are the Fermat primes of the form 2^(2^n) + 1. Note that for all currently known a(n) up to n = 17 last digit is 7 or 1 (except a(0) = 3 and a(1) = 5). Corresponding least bases a>1 such that a^(2^n) + 1 is prime are listed in A056993.
The last-digit behavior clearly continues since, for any a, we have that a^(2^2) will be either 0 or 1 modulo 5. So for n >= 2, a(n) is 1 or 2 modulo 5, and odd. - Jeppe Stig Nielsen, Nov 16 2020

Crossrefs

Programs

  • Mathematica
    Do[f=Min[Select[ Table[ i^(2^n) + 1, {i, 2, 500} ],PrimeQ]];Print[{n,f}],{n,0,9}]

A138888 Non-Fermat numbers.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2008

Keywords

Comments

Numbers that are not members of A000215.

Crossrefs

Programs

  • Mathematica
    Complement[Range[10000],{3,5,17,257}] (* Harvey P. Dale, Aug 04 2023 *)
  • Python
    def A138888(n): return n+(m:=((n-1).bit_length()-1).bit_length() if n>2 else 0)+(n+m>=(1<<(1<Chai Wah Wu, Oct 19 2024

Formula

For n > 2, a(n) = n+m+2 if n+m>=4^(2^m) and a(n) = n+m+1 otherwise where m = floor(log_2(log_2(n-1))). - Chai Wah Wu, Oct 19 2024

A001543 a(0) = 1, a(n) = 5 + Product_{i=0..n-1} a(i) for n > 0.

Original entry on oeis.org

1, 6, 11, 71, 4691, 21982031, 483209576974811, 233491495280173380882643611671, 54518278368171228201482876236565907627201914279213829353891
Offset: 0

Views

Author

Keywords

Comments

This is the special case k=5 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A177888.

Programs

  • Mathematica
    Flatten[{1,RecurrenceTable[{a[1]==6, a[n]==a[n-1]*(a[n-1]-5)+5}, a, {n, 1, 10}]}] (* Vaclav Kotesovec, Dec 17 2014 *)
    Join[{1},NestList[#(#-5)+5&,6,10]] (* Harvey P. Dale, Oct 10 2016 *)
  • PARI
    {
      print1("1, 6");
      n=6;
      m=Mod(5,6);
      for(i=2,9,
        n=m.mod+lift(m);
        m=chinese(m,Mod(5,n));
        print1(", "n)
      )
    } \\ Charles R Greathouse IV, Dec 09 2011

Formula

a(n) = a(n-1) * (a(n-1) - 5) + 5. - Charles R Greathouse IV, Dec 09 2011
a(n) ~ c^(2^n), where c = 1.696053774403103324180661918166106455311376345474042496749974632237971081462... . - Vaclav Kotesovec, Dec 17 2014

Extensions

New name from Alonso del Arte, Dec 09 2011

A001544 A nonlinear recurrence: a(n) = a(n-1)^2 - 6*a(n-1) + 6, with a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 13, 97, 8833, 77968897, 6079148431583233, 36956045653220845240164417232897, 1365749310322943329964576677590044473746108255675592519835615233
Offset: 0

Views

Author

Keywords

Comments

This is the special case k=6 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=6 of A177888. - Alois P. Heinz, Nov 07 2012

Programs

  • Mathematica
    Flatten[{1,RecurrenceTable[{a[1]==7, a[n]==a[n-1]*(a[n-1]-6)+6}, a, {n, 1, 10}]}] (* Vaclav Kotesovec, Dec 17 2014 *)
    Join[{1},NestList[#^2-6#+6&,7,10]] (* Harvey P. Dale, Nov 19 2024 *)
  • PARI
    a(n)=if(n<1, n==0, if(n==1, 7, n=a(n-1); n^2-6*n+6))

Formula

a(n) ~ c^(2^n), where c = 1.76450357631319101484804524709844019487003729926754942591419313922841785792... . - Vaclav Kotesovec, Dec 17 2014

A070816 Solutions to phi(gpf(x)) - gpf(phi(x)) = 65534 = c are special multiples of 65537, x=65537*k, where the largest prime factors of factor k were observed in {2, 3, 5, 17, 257}.

Original entry on oeis.org

65537, 131074, 196611, 262148, 327685, 393222, 524296, 655370, 786444, 983055, 1048592, 1114129, 1310740, 1572888, 1966110, 2097184, 2228258, 2621480, 3145776, 3342387, 3932220, 4194368, 4456516, 5242960, 5570645, 6291552
Offset: 1

Views

Author

Labos Elemer, May 09 2002

Keywords

Comments

See solutions to other even cases of c [=A070813]: A007283 for 0, A070004 for 2, A070814 for 14, A070815 for 254.

Examples

			For n = 572662306 = 2*17*257*65537, gpf(n) = 65537, phi(n) = 268435456, commutator[572662306] = phi(65537) - gpf(268435456) = 65536 - 2 = 65534.
		

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 65534], Print[{n, n/65537, pf[n/65537]}]], {n, 3, 1000000}] (* Terms of sequence are n *)

A070969 a(n) = 2^(2^n + 1) + 1.

Original entry on oeis.org

5, 9, 33, 513, 131073, 8589934593, 36893488147419103233, 680564733841876926926749214863536422913, 231584178474632390847141970017375815706539969331281128078915168015826259279873
Offset: 0

Views

Author

Anonymous, May 17 2002

Keywords

Examples

			a(0)=5 because 2^(2^0 + 1) + 1 = 2^(1 + 1) + 1 = 2^2 + 1 = 4 + 1 = 5.
		

Crossrefs

Programs

Extensions

Edited by Robert G. Wilson v, May 20 2002
Previous Showing 71-80 of 245 results. Next