cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 119 results. Next

A288950 Number of relaxed compacted binary trees of right height at most one with empty initial and final sequence on level 0.

Original entry on oeis.org

1, 0, 1, 2, 15, 140, 1575, 20790, 315315, 5405400, 103378275, 2182430250, 50414138775, 1264936572900, 34258698849375, 996137551158750, 30951416768146875, 1023460181133390000, 35885072600989486875, 1329858572860198631250, 51938365373373313209375
Offset: 0

Views

Author

Michael Wallner, Jun 20 2017

Keywords

Comments

A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. The number of unbounded relaxed compacted binary trees of size n is A082161(n). The number of relaxed compacted binary trees of right height at most one of size n is A001147(n). See the Genitrini et al. and Wallner link. - Michael Wallner, Apr 20 2017
a(n) is the number of plane increasing trees with n+1 nodes where node 3 is at depth 1 on the right of node 2 and where the node n+1 has a left sibling. See the Wallner link. - Michael Wallner, Apr 20 2017

Examples

			Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
  L-o-o-o-o-o-o-o-o-o
    |       |     | |
    o   o-o-o   o-o o.
For n=0 the a(0)=1 solution is L.
For n=1 we have a(1)=0 because we need nodes on level 0 and level 1.
For n=2 the a(2)=1 solution is
     L-o
       |
       o
and the pointers of the node on level 1 both point to the leaf.
For n=3 the a(3)=2 solutions have the structure
     L-o
       |
     o-o
where the pointers of the last node have to point to the leaf, but the pointer of the next node has 2 choices: the leaf of the previous node.
		

Crossrefs

Cf. A001147 (relaxed compacted binary trees of right height at most one).
Cf. A082161 (relaxed compacted binary trees of unbounded right height).
Cf. A000032, A000246, A001879, A051577, A177145, A213527, A288950, A288952, A288953, A288954 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A001879.

Programs

  • Mathematica
    terms = 21; (z + (1 - z)/3*(2 - z + (1 - 2z)^(-1/2)) + O[z]^terms // CoefficientList[#, z] &) Range[0, terms-1]! (* Jean-François Alcover, Dec 04 2018 *)

Formula

E.g.f.: z + (1-z)/3 * (2-z + (1-2*z)^(-1/2)).
From Seiichi Manyama, Apr 26 2025: (Start)
a(n) = (n-1)*(2*n-3)/(n-2) * a(n-1) for n > 3.
a(n) = A001879(n-2)/3 for n > 2. (End)

A001261 Number of permutations of length n with 5 consecutive ascending pairs.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 6, 63, 616, 6678, 77868, 978978, 13216104, 190899423, 2939850914, 48106651593, 833848627248, 15265844099324, 294412707629208, 5966764207952724, 126793739418994416, 2819296088257641741, 65470320271760790078
Offset: 1

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal in triangle A010027.

Programs

  • Maple
    a:=n->sum((n+3)!*sum((-1)^k/k!/5!, j=1..n), k=0..n): seq(a(n), n=2..19); # Zerinvary Lajos, May 25 2007
  • Mathematica
    Range[0, 30]! CoefficientList[Series[x^5/5!*Exp[-x]/(1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 13 2014 *)

Formula

E.g.f.: (x^5/5!)*exp(-x)/(1-x)^2. - Vladeta Jovovic, Jan 03 2003

Extensions

More terms from Vladeta Jovovic, Jan 03 2003
Name clarified and offset changed by N. J. A. Sloane, Apr 12 2014

A060475 Triangular array formed from successive differences of factorial numbers, then with factorials removed.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 11, 9, 1, 4, 13, 32, 53, 44, 1, 5, 21, 71, 181, 309, 265, 1, 6, 31, 134, 465, 1214, 2119, 1854, 1, 7, 43, 227, 1001, 3539, 9403, 16687, 14833, 1, 8, 57, 356, 1909, 8544, 30637, 82508, 148329, 133496, 1, 9, 73, 527, 3333, 18089, 81901, 296967, 808393, 1468457, 1334961
Offset: 0

Views

Author

Henry Bottomley, Mar 16 2001

Keywords

Comments

T(n,k) is also the number of partial bijections (of an n-element set) with a fixed domain of size k and without fixed points. Equivalently, T(n,k) is the number of partial derangements with a fixed domain of size k in the symmetric inverse semigroup (monoid), I sub n. - Abdullahi Umar, Sep 14 2008

Examples

			Triangle begins
  1,
  1,  0,
  1,  1,  1,
  1,  2,  3,  2,
  1,  3,  7, 11,  9,
  1,  4, 13, 32, 53, 44,
  ...
		

Crossrefs

Columns include A000012, A001477, A002061.
Diagonals include A000166, A000255, A000153, A000261, A001909, A001910.
Main diagonal is abs of A002119.
Similar to A076731.
Row sums equal A003470. - Johannes W. Meijer, Jul 27 2011

Programs

  • Magma
    [[Factorial(k)*(&+[(-1)^j*Binomial(n-j, k-j)/Factorial(j): j in [0..k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 04 2019
    
  • Maple
    A060475 := proc(n,k): k! * add(binomial(n-j,k-j)*(-1)^j/j!, j=0..k) end:
    seq(seq(A060475(n,k), k=0..n), n=0..7); # Johannes W. Meijer, Jul 27 2011
    T := (n,k) -> KummerU(-k, -n, -1):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..10); # Peter Luschny, Jul 07 2022
  • Mathematica
    t[n_, k_] := k!*Sum[Binomial[n - j, k - j]*(-1)^j/j!, {j, 0, k}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Aug 08 2011 *)
  • PARI
    {T(n,k) = k!*sum(j=0,k, (-1)^j*binomial(n-j, k-j)/j!)};
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 04 2019
    
  • Sage
    [[factorial(k)*sum((-1)^j*binomial(n-j, k-j)/factorial(j) for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 04 2019

Formula

T(n,k) = A047920(n,k)/(n-k)! = (n-1)*T(n-1,k-1) + (k-1)*T(n-2,k-2) = (n-k+1)*T(n, k-1) - T(n-1,k-1).
From Abdullahi Umar, Sep 14 2008: (Start)
T(n,k) = k! * Sum_{j=0..k} C(n-j,k-j)*(-1)^j/j!.
C(n,k)*T(n,k) = A144089(n, k). (End)
T(n,k) = A076732(n+1,k+1)/(k+1). - Johannes W. Meijer, Jul 27 2011
E.g.f. as a square array: A(x,y) = exp(-x)/(1 - x - y) = (1 + y + y^2 + y^3 + ...) + (y + 2*y^2 + 3*y^3 + 4*y^4 + ...)*x + (1 + 3*y + 7*y^2 + 13*y^3 + ...)*x^2/2! + (2 + 11*y + 32*y^2 + 71*y^3 + ...)*x^3/3! + .... Observe that (1 - y)*A(x*(1 - y),y) = exp(x*(y - 1))/(1 - x) is the e.g.f. for A008290. - Peter Bala, Sep 25 2013
T(n, k) = KummerU(-k, -n, -1). - Peter Luschny, Jul 07 2022

A061312 Triangle T[n,m]: T[n,-1] = 0; T[0,0] = 0; T[n,0] = n*n!; T[n,m] = T[n,m-1] - T[n-1,m-1].

Original entry on oeis.org

0, 1, 1, 4, 3, 2, 18, 14, 11, 9, 96, 78, 64, 53, 44, 600, 504, 426, 362, 309, 265, 4320, 3720, 3216, 2790, 2428, 2119, 1854, 35280, 30960, 27240, 24024, 21234, 18806, 16687, 14833, 322560, 287280, 256320, 229080, 205056, 183822, 165016, 148329
Offset: 0

Views

Author

Wouter Meeussen, Jun 06 2001

Keywords

Comments

Appears in the (n,k)-matching problem A076731. [Johannes W. Meijer, Jul 27 2011]

Examples

			0,
1, 1,
4, 3, 2,
18, 14, 11, 9,
96, 78, 64, 53, 44,
600, 504, 426, 362, 309, 265,
4320, 3720, 3216, 2790, 2428, 2119, 1854,
35280, 30960, 27240, 24024, 21234, 18806, 16687, 14833,
		

Crossrefs

Cf. A061018.
From Johannes W. Meijer, Jul 27 2011: (Start)
The row sums equal A193465. (End)

Programs

  • Magma
    [[(&+[(-1)^j*Binomial(k+1,j)*Factorial(n-j+1): j in [0..k+1]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Aug 13 2018
  • Maple
    A061312 := proc(n,m): add(((-1)^j)*binomial(m+1,j)*(n+1-j)!, j=0..m+1) end: seq(seq(A061312(n,m), m=0..n), n=0..7); # Johannes W. Meijer, Jul 27 2011
  • Mathematica
    T[n_, k_]:= Sum[(-1)^j*Binomial[k + 1, j]*(n + 1 - j)!, {j, 0, k + 1}]; Table[T[n, k], {n, 0, 100}, {k, 0, n}] // Flatten  (* G. C. Greubel, Aug 13 2018 *)
  • PARI
    for(n=0,20, for(k=0,n, print1(sum(j=0,k+1, (-1)^j*binomial(k+1,j) *(n-j+1)!), ", "))) \\ G. C. Greubel, Aug 13 2018
    

Formula

T[n,m] = T[n,m-1]-T[n-1,m-1] with T[n,-1] = 0 and T[n,0] = A001563(n) = n*n!
T(n,m) = sum(((-1)^j)*binomial(m+1,j)*(n+1-j)!, j=0..m+1) [Johannes W. Meijer, Jul 27 2011]

A094791 Triangle read by rows giving coefficients of polynomials arising in successive differences of (n!)_{n>=0}.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 3, 5, 2, 1, 6, 17, 20, 9, 1, 10, 45, 100, 109, 44, 1, 15, 100, 355, 694, 689, 265, 1, 21, 196, 1015, 3094, 5453, 5053, 1854, 1, 28, 350, 2492, 10899, 29596, 48082, 42048, 14833, 1, 36, 582, 5460, 32403, 124908, 309602, 470328, 391641, 133496
Offset: 0

Views

Author

Benoit Cloitre, Jun 11 2004

Keywords

Comments

Let D_0(n)=n! and D_{k+1}(n)=D_{k}(n+1)-D_{k}(n), then D_{k}(n)=n!*P_{k}(n) where P_{k} is a polynomial with integer coefficients of degree k.
The horizontal reversal of this triangle arises as a binomial convolution of the derangements coefficients der(n,i) (numbers of permutations of size n with i derangements = A098825(n,i) = number of permutations of size n with n-i rencontres = A008290(n,n-i), see formula section). - Olivier Gérard, Jul 31 2011

Examples

			D_3(n) = n!*(n^3 + 3*n^2 + 5*n + 2).
D_4(n) = n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9).
Table begins:
  1
  1  0
  1  1   1
  1  3   5   2
  1  6  17  20    9
  1 10  45 100  109   44
  1 15 100 355  694  689  265
  ...
		

Crossrefs

Successive differences of factorial numbers: A001563, A001564, A001565, A001688, A001689, A023043.
Rencontres numbers A008290. Partial derangements A098825.
Row sum is A000255. Signed version in A126353.

Programs

  • Maple
    with(LREtools): A094791_row := proc(n)
    delta(x!,x,n); simplify(%/x!); seq(coeff(%,x,n-j),j=0..n) end:
    seq(print(A094791_row(n)),n=0..9); # Peter Luschny, Jan 09 2015
  • Mathematica
    d[0][n_] := n!; d[k_][n_] := d[k][n] = d[k - 1][n + 1] - d[k - 1][n] // FullSimplify;
    row[k_] := d[k][n]/n! // FullSimplify // CoefficientList[#, n]& // Reverse;
    Array[row, 10, 0] // Flatten (* Jean-François Alcover, Aug 02 2019 *)

Formula

T(n, n) = A000166(n).
T(2, k) = A000217(k).
Sum_{k=0..n} T(n,n-k)*x^k = Sum_{i=0..n} der(n,i)*binomial( n+x, i) (an analog of Worpitzky's identity). - Olivier Gérard, Jul 31 2011

Extensions

Edited and T(0,0) corrected according to the author's definition by Olivier Gérard, Jul 31 2011

A176735 a(n) = (n+8)*a(n-1) + (n-1)*a(n-2), a(-1)=0, a(0)=1.

Original entry on oeis.org

1, 9, 91, 1019, 12501, 166589, 2394751, 36920799, 607496041, 10622799089, 196677847971, 3843107102339, 79025598374461, 1705654851091749, 38551739502886471, 910569176481673319, 22431936328103456721, 575367515026293191129, 15340898308261381733611, 424560869593530584247819
Offset: 0

Views

Author

Wolfdieter Lang, Jul 14 2010

Keywords

Comments

a(n) enumerates the possibilities for distributing n beads, n>=1, labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and k=9 indistinguishable, ordered, fixed cords, each allowed to have any number of beads. Beadless necklaces as well as beadless cords contribute a factor 1 in the counting, e.g., a(0):= 1*1 =1. See A000255 for the description of a fixed cord with beads. This produces for a(n) the exponential (aka binomial) convolution of the subfactorial sequence {A000166(n)} and the sequence {A049389(n) = (n+8)!/8!}. See the necklaces and cords problem comment in A000153. Therefore the recurrence with inputs holds. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010).

Examples

			Necklaces and 9 cords problem. For n=4 one considers the following weak 2-part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively !4*1,binomial(4,3)*!3*c9(1), (binomial(4,2)*! 2)*c9(2), and 1*c9(4) with the subfactorials !n:=A000166(n) (see the necklace comment there) and the c9(n):=A049389(n) numbers for the pure 9-cord problem (see the remark on the e.g.f. for the k-cord problem in A000153; here for k=9: 1/(1-x)^9). This adds up as 9 + 4*2*9 + (6*1)*90 + 11880 = 12501 = a(4).
		

Crossrefs

Cf. A176734 (necklaces and k=8 cords).

Programs

  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==9,a[n]==(n+8)a[n-1]+(n-1)a[n-2]},a[n],{n,20}] (* Harvey P. Dale, Oct 20 2011 *)
    Table[(-1)^n HypergeometricPFQ[{10, -n}, {}, 1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)

Formula

E.g.f. (exp(-x)/(1-x))*(1/(1-x)^9) = exp(-x)/(1-x)^10, equivalent to the given recurrence.
a(n) = A086764(n+9,9).
a(n) = (-1)^n*2F0(10,-n;;1). - Benedict W. J. Irwin, May 27 2016

A189282 Number of permutations p of 1,2,...,n satisfying p(i+3)-p(i)<>3 for all 1<=i<=n-3.

Original entry on oeis.org

1, 1, 2, 6, 22, 98, 534, 3414, 25498, 217338, 2080990, 22076030, 256888218, 3252308706, 44497313158, 654139144158, 10281397705242, 172033123244330, 3052895403376110, 57266799403366334, 1132124282036449570, 23524895818926592242
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[3,3] on an n X n chessboard.

Crossrefs

Formula

Asymptotics: a(n)/n! ~ (1 + 5/n + 6/n^2)/e.

A259834 Number of permutations of [n] with no fixed points where the maximal displacement of an element equals n-1.

Original entry on oeis.org

0, 0, 1, 2, 5, 20, 97, 574, 3973, 31520, 281825, 2803418, 30704101, 367114252, 4757800705, 66432995030, 994204132517, 15875195019224, 269397248811073, 4841453414347570, 91856764780324165, 1834779993945449348, 38485629141294791201, 845788826477292504302
Offset: 0

Views

Author

Alois P. Heinz, Jul 06 2015

Keywords

Comments

a(n) counts permutations p of [n] such that p(i) <> i and (p(1) = n or p(n) = 1).

Examples

			a(2) = 1: 21.
a(3) = 2: 231, 312.
a(4) = 5: 2341, 3421, 4123, 4312, 4321.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [0, 0, 1][n+1],
         ((2*n^2-11*n+13)*a(n-1) +(2*n-5)*(n-3)*a(n-2))/(2*n-7))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Join[{0, 0}, Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == (n - m)*y[m] + (n - m) y[m - 1], y[0] == 0, y[1] == 1, y[2] == 1}]][n], {n, 2, 30}]] (* Benedict W. J. Irwin, Nov 03 2016 *)
    Table[If[n<2, 0, Subfactorial[n-2]+2*Subfactorial[n-1]], {n,0,23}] (* Peter Luschny, Oct 04 2017 *)
  • Python
    def A259834_list(len):
        L, u, x, y = [0], 1, 0, 0
        for n in range(len):
            y, x, u = x, x*n + u, -u
            L.append(y + 2*x)
        L[1] = 0
        return L
    print(A259834_list(23)) # Peter Luschny, Oct 04 2017

Formula

a(n) = ((2*n^2-11*n+13)*a(n-1) + (2*n-5)*(n-3)*a(n-2))/(2*n-7) for n > 2.
a(n) = (n-2)! * [x^(n-2)] exp(-x)*(x+1)/(x-1)^2 for n > 1.
a(n) ~ 2 * (n-1)! / exp(1). - Vaclav Kotesovec, Jul 07 2015
a(n) = y(n,n), n > 1, where y(m+1,n) = (n-m)*y(m,n) + (n-m)*y(m-1,n), with y(0,n)=0, y(1,n)=y(2,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
From Peter Luschny, Oct 05 2017: (Start)
a(n) = (Gamma(n-1, -1) + 2*Gamma(n, -1)) / e for n >= 2.
a(n) = A000166(n-2) + 2*A000166(n-1) for n >= 2.
a(n) = (2*n-1)*A000166(n-2) - 2*(-1)^n for n >= 2.
a(n) = A000255(n-2) + A000166(n-1) for n >= 2.
a(n+2) = (-1)^n*(-hypergeom([1,1-n], [], 1) + hypergeom([2,2-n], [], 1)) = A292898(2, n) for n >= 0.
a(n) ~ 2*sqrt(2*Pi)*exp(-n-1)*n^(n-1/2). (End)
a(n+2) = A306455(n) + n! for n >= 0. - Alois P. Heinz, Feb 16 2019

A288952 Number of relaxed compacted binary trees of right height at most one with empty sequences between branch nodes on level 0.

Original entry on oeis.org

1, 0, 1, 2, 15, 92, 835, 8322, 99169, 1325960, 19966329, 332259290, 6070777999, 120694673748, 2594992240555, 59986047422378, 1483663965460545, 39095051587497488, 1093394763005554801, 32347902448449172530, 1009325655965539561231, 33125674098690460236620
Offset: 0

Views

Author

Michael Wallner, Jun 20 2017

Keywords

Comments

A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. A branch node is a node with a left and right edge (no pointer). See the Genitrini et al. link. - Michael Wallner, Apr 20 2017
a(n) is the number of plane increasing trees with n+1 nodes where in the growth process induced by the labels a maximal young leaf has to be followed by a non-maximal young leaf. A young leaf is a leaf with no left sibling. A maximal young leaf is a young leaf with maximal label. See the Wallner link. - Michael Wallner, Apr 20 2017

Examples

			See A288950 and A288953.
		

Crossrefs

Cf. A001147 (relaxed compacted binary trees of right height at most one).
Cf. A082161 (relaxed compacted binary trees of unbounded right height).
Cf. A000032, A000246, A001879, A051577, A177145, A213527, A288950, A288953, A288954 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of relaxed compacted binary trees of right height at most one, see the Wallner link).

Programs

  • GAP
    a := [1,0];; for n in [3..10^2] do a[n] := (n-2)*a[n-1] + (n-2)^2*a[n-2]; od; a; # Muniru A Asiru, Jan 26 2018
  • Maple
    a:=proc(n) option remember: if n=0 then 1 elif n=1 then 0 elif n>=2 then (n-1)*procname(n-1)-(n-1)^2*procname(n-2) fi; end:
    seq(a(n),n=0..100); # Muniru A Asiru, Jan 26 2018
  • Mathematica
    Fold[Append[#1, (#2 - 1) Last[#1] + #1[[#2 - 1]] (#2 - 1)^2] &, {1, 0}, Range[2, 21]] (* Michael De Vlieger, Jan 28 2018 *)

Formula

E.g.f.: exp( -Sum_{n>=1} Fibonacci(n-1)*x^n/n ), where Fibonacci(n) = A000045(n).
E.g.f.: exp( -1/sqrt(5)*arctanh(sqrt(5)*z/(2-z)) )/sqrt(1-z-z^2).
a(0) = 1, a(1) = 0, a(n) = (n-1)*a(n-1) + (n-1)^2*a(n-2). - Daniel Suteu, Jan 25 2018

A116853 Difference triangle of factorial numbers read by upward diagonals.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 11, 14, 18, 24, 53, 64, 78, 96, 120, 309, 362, 426, 504, 600, 720, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320
Offset: 1

Views

Author

Gary W. Adamson, Feb 24 2006

Keywords

Comments

This is a subsequence of Euler's difference table A068106 and of A047920 (in a different ordering), since 0! = 1 was left out here. - Georg Fischer, Mar 23 2019

Examples

			Starting with 1, 2, 6, 24, 120 ... we take the first difference row (A001563), second, third, etc. Reorient into a flush left format, getting:
[1]    1;
[2]    1,   2;
[3]    3,   4,   6;
[4]   11,  14,  18,  24;
[5]   53,  64,  78,  96, 120;
[6]  309, 362, 426, 504, 600, 720;
...
		

Crossrefs

Cf. A000142 (factorial numbers).
Cf. A000255 (first column and inverse binomial transform of A000142).
N-th forward differences of A000142: A001563 (1st), A001564 (2nd), A001565 (3rd), A001688 (4th), A001689 (5th).
Cf. A047920 (with 0!, different order), A068106 (with 0!), A180191 (row sums), A246606 (central terms).

Programs

  • Haskell
    a116853 n k = a116853_tabl !! (n-1) !! (k-1)
    a116853_row n = a116853_tabl !! (n-1)
    a116853_tabl = map reverse $ f (tail a000142_list) [] where
       f (u:us) vs = ws : f us ws where ws = scanl (-) u vs
    -- Reinhard Zumkeller, Aug 31 2014
  • Mathematica
    rows = 8;
    rr = Range[rows]!;
    dd = Table[Differences[rr, n], {n, 0, rows-1}];
    T = Array[t, {rows, rows}];
    Do[Thread[Evaluate[Diagonal[T, -k+1]] = dd[[k, ;;rows-k+1]]], {k, rows}];
    Table[t[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 21 2019 *)

Formula

Take successive difference rows of factorial numbers n! starting with n=1. Reorient into a triangle format.
Previous Showing 51-60 of 119 results. Next