cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 265 results. Next

A185896 Triangle of coefficients of (1/sec^2(x))*D^n(sec^2(x)) in powers of t = tan(x), where D = d/dx.

Original entry on oeis.org

1, 0, 2, 2, 0, 6, 0, 16, 0, 24, 16, 0, 120, 0, 120, 0, 272, 0, 960, 0, 720, 272, 0, 3696, 0, 8400, 0, 5040, 0, 7936, 0, 48384, 0, 80640, 0, 40320, 7936, 0, 168960, 0, 645120, 0, 846720, 0, 362880, 0, 353792, 0, 3256320, 0, 8951040, 0, 9676800, 0, 3628800
Offset: 0

Views

Author

Peter Bala, Feb 07 2011

Keywords

Comments

DEFINITION
Define polynomials R(n,t) with t = tan(x) by
... (d/dx)^n sec^2(x) = R(n,tan(x))*sec^2(x).
The first few are
... R(0,t) = 1
... R(1,t) = 2*t
... R(2,t) = 2 + 6*t^2
... R(3,t) = 16*t + 24*t^3.
This triangle shows the coefficients of R(n,t) in ascending powers of t called the tangent number triangle in [Hodges and Sukumar].
The polynomials R(n,t) form a companion polynomial sequence to Hoffman's two polynomial sequences - P(n,t) (A155100), the derivative polynomials of the tangent and Q(n,t) (A104035), the derivative polynomials of the secant. See also A008293 and A008294.
COMBINATORIAL INTERPRETATION
A combinatorial interpretation for the polynomial R(n,t) as the generating function for a sign change statistic on certain types of signed permutation can be found in [Verges].
A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...|x_n|} = {1,2...,n}. They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube.
Let x_1,...,x_n be a signed permutation.
Then 0,x_1,...,x_n,0 is a snake of type S(n;0,0) when 0 < x_1 > x_2 < ... 0.
For example, 0 4 -3 -1 -2 0 is a snake of type S(4;0,0).
Let sc be the number of sign changes through a snake
... sc = #{i, 1 <= i <= n-1, x_i*x_(i+1) < 0}.
For example, the snake 0 4 -3 -1 -2 0 has sc = 1. The polynomial R(n,t) is the generating function for the sign change statistic on snakes of type S(n+1;0,0):
... R(n,t) = sum {snakes in S(n+1;0,0)} t^sc.
See the example section below for the cases n=1 and n=2.
PRODUCTION MATRIX
Define three arrays R, L, and S as
... R = superdiag[2,3,4,...]
... L = subdiag[1,2,3,...]
... S = diag[2,4,6,...]
with the indicated sequences on the main superdiagonal, the main subdiagonal and main diagonal, respectively, and 0's elsewhere. The array R+L is the production array for this triangle: the first row of (R+L)^n produces the n-th row of the triangle.
On the vector space of complex polynomials the array R, the raising operator, represents the operator p(x) - > d/dx (x^2*p(x)), and the array L, the lowering operator, represents the differential operator d/dx - see Formula (4) below.
The three arrays satisfy the commutation relations
... [R,L] = S, [R,S] = 2*R, [L,S] = -2*L
and hence give a representation of the Lie algebra sl(2).

Examples

			Table begins
  n\k|.....0.....1.....2.....3.....4.....5.....6
  ==============================================
  0..|.....1
  1..|.....0.....2
  2..|.....2.....0.....6
  3..|.....0....16.....0....24
  4..|....16.....0...120.....0...120
  5..|.....0...272.....0...960.....0...720
  6..|...272.....0..3696.....0..8400.....0..5040
Examples of recurrence relation
  T(4,2) = 3*(T(3,1) + T(3,3)) = 3*(16 + 24) = 120;
  T(6,4) = 5*(T(5,3) + T(5,5)) = 5*(960 + 720) = 8400.
Example of integral formula (6)
... Integral_{t = -1..1} (1-t^2)*(16-120*t^2+120*t^4)*(272-3696*t^2+8400*t^4-5040*t^6) dt = 2830336/1365 = -2^13*Bernoulli(12).
Examples of sign change statistic sc on snakes of type (0,0)
= = = = = = = = = = = = = = = = = = = = = =
.....Snakes....# sign changes sc.......t^sc
= = = = = = = = = = = = = = = = = = = = = =
n=1
...0 1 -2 0...........1................t
...0 2 -1 0...........1................t
yields R(1,t) = 2*t;
n=2
...0 1 -2 3 0.........2................t^2
...0 1 -3 2 0.........2................t^2
...0 2 1 3 0..........0................1
...0 2 -1 3 0.........2................t^2
...0 2 -3 1 0.........2................t^2
...0 3 1 2 0..........0................1
...0 3 -1 2 0.........2................t^2
...0 3 -2 1 0.........2................t^2
yields
R(2,t) = 2 + 6*t^2.
		

Crossrefs

Programs

  • Maple
    R = proc(n) option remember;
    if n=0 then RETURN(1);
    else RETURN(expand(diff((u^2+1)*R(n-1), u))); fi;
    end proc;
    for n from 0 to 12 do
    t1 := series(R(n), u, 20);
    lprint(seriestolist(t1));
    od:
  • Mathematica
    Table[(-1)^(n + 1)*(-1)^((n - k)/2)*Sum[j!*StirlingS2[n + 1, j]*2^(n + 1 - j)*(-1)^(n + j - k)*Binomial[j - 1, k], {j, k + 1, n + 1}], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 22 2017 *)
  • PARI
    {T(n, k) = if( n<0 || k<0 || k>n, 0, if(n==k, n!, (k+1)*(T(n-1, k-1) + T(n-1, k+1))))};
    
  • PARI
    {T(n, k) = my(A); if( n<0 || k>n, 0, A=1; for(i=1, n, A = ((1 + x^2) * A)'); polcoeff(A, k))}; /* Michael Somos, Jun 24 2017 */

Formula

GENERATING FUNCTION
E.g.f.:
(1)... F(t,z) = 1/(cos(z)-t*sin(z))^2 = Sum_{n>=0} R(n,t)*z^n/n! = 1 + (2*t)*z + (2+6*t^2)*z^2/2! + (16*t+24*t^3)*z^3/3! + ....
The e.g.f. equals the square of the e.g.f. of A104035.
Continued fraction representation for the o.g.f:
(2)... F(t,z) = 1/(1-2*t*z - 2*(1+t^2)*z^2/(1-4*t*z -...- n*(n+1)*(1+t^2)*z^2/(1-2*n*(n+1)*t*z -....
RECURRENCE RELATION
(3)... T(n,k) = (k+1)*(T(n-1,k-1) + T(n-1,k+1)).
ROW POLYNOMIALS
The polynomials R(n,t) satisfy the recurrence relation
(4)... R(n+1,t) = d/dt{(1+t^2)*R(n,t)} with R(0,t) = 1.
Let D be the derivative operator d/dt and U = t, the shift operator.
(5)... R(n,t) = (D + DUU)^n 1
RELATION WITH OTHER SEQUENCES
A) Derivative Polynomials A155100
The polynomials (1+t^2)*R(n,t) are the polynomials P_(n+2)(t) of A155100.
B) Bernoulli Numbers A000367 and A002445
Put S(n,t) = R(n,i*t), where i = sqrt(-1). We have the definite integral evaluation
(6)... Integral_{t = -1..1} (1-t^2)*S(m,t)*S(n,t) dt = (-1)^((m-n)/2)*2^(m+n+3)*Bernoulli(m+n+2).
The case m = n is equivalent to the result of [Grosset and Veselov]. The methods used there extend to the general case.
C) Zigzag Numbers A000111
(7)... R_n(1) = A000828(n+1) = 2^n*A000111(n+1).
D) Eulerian Numbers A008292
The polynomials R(n,t) are related to the Eulerian polynomials A(n,t) via
(8)... R(n,t) = (t+i)^n*A(n+1,(t-i)/(t+i))
with the inverse identity
(9)... A(n+1,t) = (-i/2)^n*(1-t)^n*R(n,i*(1+t)/(1-t)),
where {A(n,t)}n>=1 = [1,1+t,1+4*t+t^2,1+11*t+11*t^2+t^3,...] is the sequence of Eulerian polynomials and i = sqrt(-1).
E) Ordered set partitions A019538
(10)... R(n,t) = (-2*i)^n*T(n+1,x)/x,
where x = i/2*t - 1/2 and T(n,x) is the n-th row po1ynomial of A019538;
F) Miscellaneous
Column 1 is the sequence of tangent numbers - see A000182.
A000670(n+1) = (-i/2)^n*R(n,3*i).
A004123(n+2) = 2*(-i/2)^n*R(n,5*i).
A080795(n+1) =(-1)^n*(sqrt(-2))^n*R(n,sqrt(-2)). - Peter Bala, Aug 26 2011
From Leonid Bedratyuk, Aug 12 2012: (Start)
T(n,k) = (-1)^(n+1)*(-1)^((n-k)/2)*Sum_{j=k+1..n+1} j! *stirling2(n+1,j) *2^(n+1-j) *(-1)^(n+j-k) *binomial(j-1,k), see A059419.
Sum_{j=i+1..n+1}((1-(-1)^(j-i))/(2*(j-i))*(-1)^((n-j)/2)*T(n,j))=(n+1)*(-1)^((n-1-i)/2)*T(n-1,i), for n>1 and 0
G.f.: 1/G(0,t,x), where G(k,t,x) = 1 - 2*t*x - 2*k*t*x - (1+t^2)*(k+2)*(k+1)*x^2/G(k+1,t,x); (continued fraction due to T. J. Stieltjes). - Sergei N. Gladkovskii, Dec 27 2013

A216966 O.g.f.: 1/(1 - x/(1 - 2^3*x/(1 - 3^3*x/(1 - 4^3*x/(1 - 5^3*x/(1 - 6^3*x/(1 -...))))))), a continued fraction.

Original entry on oeis.org

1, 1, 9, 297, 24273, 3976209, 1145032281, 530050022073, 369626762653857, 369614778179835681, 509880429246329788329, 940535818601273787325257, 2261104378216803649437779313, 6933711495845384616312688513329, 26630255658298074277771723491847161
Offset: 0

Author

Paul D. Hanna, Sep 20 2012

Keywords

Comments

Compare to the continued fraction o.g.f. for the Euler numbers (A000364):
1/(1-x/(1-2^2*x/(1-3^2*x/(1-4^2*x/(1-5^2*x/(1-6^2*x/(1-...))))))).
From Vaclav Kotesovec, Sep 24 2020: (Start)
In general, if s>0 and g.f. = 1/(1 - x/(1 - 2^s*x/(1 - 3^s*x/(1 - 4^s*x/(1 - 5^s*x/(1 - 6^s*x/(1 -...))))))), a continued fraction, then
a(n,s) ~ c(s) * d(s)^n * (n!)^s / sqrt(n), where
d(s) = (2*s*Gamma(2/s) / Gamma(1/s)^2)^s
c(s) = sqrt(s*d(s)/(2*Pi)). (End)

Examples

			G.f.: A(x) = 1 + x + 9*x^2 + 297*x^3 + 24273*x^4 + 3976209*x^5 +...
		

Crossrefs

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else -(k - n - 1)^3 * T(n, k - 1) + T(n - 1, k) fi fi end:
    a := n -> T(n, n): seq(a(n), n = 0..14);  # Peter Luschny, Oct 02 2023
  • Mathematica
    nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^3*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)^3*x*CF)); polcoeff(CF,n)}
    for(n=0,20,print1(a(n),", "))

Formula

G.f.: T(0), where T(k) = 1 - x*(k+1)^3/(x*(k+1)^3 -1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 12 2013
a(n) ~ c * d^n * (n!)^3 / sqrt(n), where d = 192 * sqrt(3) * Pi^3 / Gamma(1/3)^9 = 1.450930901627203932388423902788627... and c = 12 * sqrt(2) * 3^(1/4) * Pi / Gamma(1/3)^(9/2) = sqrt(3*d/(2*Pi)) = 0.8323271443586650769764930497... - Vaclav Kotesovec, Aug 25 2017, updated Sep 23 2020

A162443 Numerators of the BG1[ -5,n] coefficients of the BG1 matrix.

Original entry on oeis.org

5, 66, 680, 2576, 33408, 14080, 545792, 481280, 29523968, 73465856, 27525120, 856162304, 1153433600, 18798870528, 86603988992, 2080374784, 2385854332928, 3216930504704, 71829033058304, 7593502179328, 281749854617600
Offset: 1

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The BG1 matrix coefficients are defined by BG1[2m-1,1] = 2*beta(2m) and the recurrence relation BG1[2m-1,n] = BG1[2m-1,n-1] - BG1[2m-3,n-1]/(2*n-3)^2 with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. . As usual beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). For the BG2 matrix, the even counterpart of the BG1 matrix, see A008956.
We discovered that the n-th term of the row coefficients can be generated with BG1[1-2*m,n] = RBS1(1-2*m,n)* 4^(n-1)*((n-1)!)^2/ (2*n-2)! for m >= 1. For the BS1(1-2*m,n) polynomials see A160485.
The coefficients in the columns of the BG1 matrix, for m >= 1 and n >= 2, can be generated with GFB(z;n) = ((-1)^(n+1)*CFN2(z;n)*GFB(z;n=1) + BETA(z;n))/((2*n-3)!!)^2 for n >= 2. For the CFN2(z;n) and the Beta polynomials see A160480.
The BG1[ -5,n] sequence can be generated with the first Maple program and the BG1[2*m-1,n] matrix coefficients can be generated with the second Maple program.
The BG1 matrix is related to the BS1 matrix, see A160480 and the formulas below.

Examples

			The first few formulas for the BG1[1-2*m,n] matrix coefficients are:
BG1[ -1,n] = (1)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -3,n] = (1-2*n)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!
The first few generating functions GFB(z;n) are:
GFB(z;2) = ((-1)*(z^2-1)*GFB(z;1) + (-1))/1
GFB(z;3) = ((+1)*(z^4-10*z^2+9)*GFB(z;1) + (-11 + z^2))/9
GFB(z;4) = ((-1)*( z^6- 35*z^4+259*z^2-225)*GFB(z;1) + (-299 + 36*z^2 - z^4))/225
		

Crossrefs

A162444 are the denominators of the BG1[ -5, n] matrix coefficients.
The BG1[ -3, n] equal (-1)*A002595(n-1)/A055786(n-1) for n >= 1.
The BG1[ -1, n] equal A046161(n-1)/A001790(n-1) for n >= 1.
The cs(n) equal A046161(n-2)/A001803(n-2) for n >= 2.
The BETA(z, n) polynomials and the BS1 matrix lead to the Beta triangle A160480.
The CFN2(z, n), the t2(n, m) and the BG2 matrix lead to A008956.
Cf. A162443 (BG1 matrix), A162446 (ZG1 matrix) and A162448 (LG1 matrix).

Programs

  • Maple
    a := proc(n): numer((1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!) end proc: seq(a(n), n=1..21);
    # End program 1
    nmax1 := 5; coln := 3; Digits := 20: mmax1 := nmax1: for n from 0 to nmax1 do t2(n, 0) := 1 od: for n from 0 to nmax1 do t2(n, n) := doublefactorial(2*n-1)^2 od: for n from 1 to nmax1 do for m from 1 to n-1 do t2(n, m) := (2*n-1)^2* t2(n-1, m-1) + t2(n-1, m) od: od: for m from 1 to mmax1 do BG1[1-2*m, 1] := euler(2*m-2) od: for m from 1 to mmax1 do BG1[2*m-1, 1] := Re(evalf(2*sum((-1)^k1/(1+2*k1)^(2*m), k1=0..infinity))) od: for m from -mmax1 +coln to mmax1 do BG1[2*m-1, coln] := (-1)^(coln+1)*sum((-1)^k1*t2(coln-1, k1)*BG1[2*m-(2*coln-1)+2*k1, 1], k1=0..coln-1)/doublefactorial(2*coln-3)^2 od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(BG1[ -5,n]) and A162444(n) = denom(BG1[ -5,n]) with BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!.
The generating functions GFB(z;n) of the coefficients in the matrix columns are defined by
GFB(z;n) = sum(BG1[2*m-1,n]*z^(2*m-2), m=1..infinity).
GFB(z;n) = (1-z^2/(2*n-3)^2)*GFB(n-1) - 4^(n-2)*(n-2)!^2/((2*n-4)!*(2*n-3)^2) for n => 2 with GFB(z;n=1) = 1/(z*cos(Pi*z/2))*int(sin(z*t)/sin(t),t=0..Pi/2).
The column sums cs(n) = sum(BG1[2*m-1,n]*z^(2*m-2), m=1..infinity) = 4^(n-1)/((2*n-2)*binomial(2*n-2,n-1)) for n >= 2.
BG1[2*m-1,n] = (n-1)!^2*4^(n-1)*BS1[2*m-1,n]/(2*n-2)!

A000816 E.g.f.: Sum_{n >= 0} a(n) * x^(2*n) / (2*n)! = sin(x)^2 / cos(2*x).

Original entry on oeis.org

0, 2, 40, 1952, 177280, 25866752, 5535262720, 1633165156352, 635421069967360, 315212388819402752, 194181169538675507200, 145435130631317935357952, 130145345400688287667978240, 137139396592145493713802493952
Offset: 0

Keywords

Programs

  • Mathematica
    Union[ Range[0, 26]! CoefficientList[ Series[ Sin[x]^2/Cos[ 2x], {x, 0, 26}], x]] (* Robert G. Wilson v, Apr 16 2011 *)
    Table[(-1)^(n + 1) 2^(2 n) I PolyLog[-2 n, I], {n, 1, 13}] (* Artur Jasinski, Mar 21 2022 *)
    With[{nn=30},Take[CoefficientList[Series[Sin[x]^2/Cos[2x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Oct 18 2024 *)
  • PARI
    {a(n) = local(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / (2 - 1 / cos(x + x * O(x^m))^2) - 1, m))} /* Michael Somos, Apr 16 2011 */
    
  • Sage
    @CachedFunction
    def sp(n,x) :
        if n == 0 : return 1
        return -add(2^(n-k)*sp(k,1/2)*binomial(n,k) for k in range(n)[::2])
    def A000816(n) : return 0 if n == 0 else abs(sp(2*n,x)/2)
    [A000816(n) for n in (0..13)]   # Peter Luschny, Jul 30 2012

Formula

(1/2) * A002436(n), n > 0. - Ralf Stephan, Mar 09 2004
a(n) = 2^(2*n - 1) * A000364(n) except at n=0.
E.g.f.: sin(x)^2/cos(2x) = 1/Q(0) - 1/2; Q(k) = 1 + 1/(1-2*(x^2)/(2*(x^2)-(k+1)*(2k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2011
a(n) = A000819(n) unless n=0.
G.f.: (1/(G(0))-1)/2 where G(k) = 1 - 4*x*(k+1)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 12 2013
G.f.: T(0)/2 - 1/2, where T(k) = 1 - 4*x*(k+1)^2/( 4*x*(k+1)^2 - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
E.g.f.: sin(x)^2/cos(2*x) = x^2/(1-2*x^2)*T(0), where T(k) = 1 - x^2*(2*k+1)*(2*k+2)/( x^2*(2*k+1)*(2*k+2) + ((k+1)*(2*k+1) - 2*x^2)*((k+2)*(2*k+3) - 2*x^2)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
From Artur Jasinski, Mar 21 2022: (Start)
For n > 0:
a(n) = Pi^(2*n-1)*(-Psi(2*n,1/4) - (4^n)*(2^(2*n+1)-1)*Gamma(2*n+1)*Zeta(2*n+1)).
a(n) = (-1)^(n+1)*2^(2*n)*i*Li_(2*n,i) where i=sqrt(-1) and Li is polylogarithm function.
a(n) = (-64)^n*(zeta(-2*n,1/4)-zeta(-2*n,3/4)) where zeta is Hurwitz zeta function.
a(n) = (-16)^n*lerchphi(-1,-2*n,1/2). (End)

A005647 Salié numbers.

Original entry on oeis.org

1, 1, 3, 19, 217, 3961, 105963, 3908059, 190065457, 11785687921, 907546301523, 84965187064099, 9504085749177097, 1251854782837499881, 191781185418766714683, 33810804270120276636139, 6796689405759438360407137, 1545327493049348356667631841
Offset: 0

Keywords

Comments

There is another sequence called Salié numbers, A000795. - Benedict W. J. Irwin, Feb 10 2016

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 87, Problem 32.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 17; se = Series[ Cosh[x]/Cos[x], {x, 0, 2*nmax}]; a[n_] := Coefficient[se, x, 2*n]*(2*n)!/2^n; Table[a[n], {n, 0, nmax}](* Jean-François Alcover, May 11 2012 *)
    Join[{1},Table[SeriesCoefficient[Series[1/(1+ContinuedFractionK[Floor[(k^2+ 1)/2]*x*-1,1,{k,1,20}]),{x,0,20}],n],{n,1,20}]](* Benedict W. J. Irwin, Feb 10 2016 *)

Formula

a(n) = A000795(n)/2^n.
Expand cosh x / cos x and multiply coefficients by n!/(2^(n/2)).
a(n) = 2^(-n)*Sum_{k=0..n} A000364(k)*binomial(2*n, 2*k). - Philippe Deléham, Jul 30 2003
a(n) ~ (2*n)! * 2^(n+2) * cosh(Pi/2) / Pi^(2*n+1). - Vaclav Kotesovec, Mar 08 2014
G.f.: A(x) = 1/(1 - x/(1 - 2x/(1 - 5x/(1 - 8x/(1 - 13x/(1 - 18x/(1 -...))))))), a continued fraction where the coefficients are A000982 (ceiling(n^2/2)). - Benedict W. J. Irwin, Feb 10 2016

A024235 Expansion of e.g.f. tan(x)*sin(x)/2 (even powers only).

Original entry on oeis.org

0, 1, 2, 31, 692, 25261, 1351382, 99680491, 9695756072, 1202439837721, 185185594118762, 34674437196568951, 7757267081778543452, 2043536254646561946181, 626129820701814932734142, 220771946624511552276841411, 88759695789769644718332394832
Offset: 0

Author

Keywords

Comments

From Peter Bala, Nov 10 2016: (Start)
This sequence gives the coefficients in an asymptotic expansion related to the constant Pi/8. Recall the Madhava-Gregory-Leibniz series Pi/4 = Sum_{k = 1..inf} (-1)^(k-1)/(2*k - 1). Borwein et al. gave an asymptotic expansion for the tails of this series: Pi/2 - 2*Sum_{k = 1..N/2} (-1)^(k-1)/(2*k - 1) ~ 1/N - 1/N^3 + 5/N^5 - 61/N^7 + ..., where N is an integer divisible by 4 and the sequence of unsigned coefficients [1, 1, 5, 61,...] is the sequence of Euler numbers A000364.
Similarly, we have the series representation Pi/8 = Sum_{k = 1..inf} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)): using the approach of Borwein et al. we can show the associated asymptotic expansion for the tails of the series is Pi/4 - 2*Sum_{k = 1..N/2} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)) ~ -1/N^3 + 2/N^5 - 31/N^7 + 692/N^9 - ..., where N is divisible by 4 and where the sequence of unsigned coefficients [1, 2, 31, 692,...] forms the present sequence. A numerical example is given below. Cf. A278080 and A278195. (End)

Examples

			tan(x)*sin(x)/2 = 1/2*x^2 + 1/12*x^4 + 31/720*x^6 + 173/10080*x^8 + ...
From _Peter Bala_, Nov 10 2016: (Start)
Asymptotic expansion at N = 100000.
The truncated series 2*Sum_{k = 1..N/2} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)) = 0.78539816339744(9)309615660(6)4581987(603) 104929(1657)84377... to 50 digits. The bracketed digits show where this decimal expansion differs from that of Pi/4. The numbers -1, 2, -31, 692 must be added to the bracketed numbers to give the correct decimal expansion to 50 digits: Pi/4 = 0.78539816339744(8)309615660(8)4581987(572)104929(2349)84377.... (End)
		

Programs

  • Maple
    A000364 := proc(n)
       abs(euler(2*n));
    end proc:
    seq(1/2*(A000364(n) - (-1)^n), n = 0..20); # Peter Bala, Nov 10 2016
  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Tan[x]*Sin[x]/2,{x,0,nn}], x]Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Apr 27 2012 *)

Formula

G.f.: 1/2*(G(0) - 1/(1+x)) where G(k) = 1 - x*(2*k+1)^2/(1 - x*(2*k+2)^2/G(k+1) ); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 09 2013
a(n) ~ (2*n)! * (2/Pi)^(2*n+1). - Vaclav Kotesovec, Jan 23 2015
From Peter Bala, Nov 10 2016: (Start)
a(n) = 1/2*(A000364(n) - (-1)^n).
a(n) = 1/8*(-4)^n*( -E(2*n,3/2) + 2*E(2*n,1/2) - E(2*n,-1/2) ), where E(n,x) is the Euler polynomial of order n.
G.f. 1/2!*sin^2(x)/cos(x) = x^2/2! + 2*x^4/4! + 31*x^6/6! + 692*x^8/8! + ....
O.g.f. for a signed version of the sequence: Sum_{n >= 0} ( 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n, k)/((1 - (2*k - 1)*x)*(1 - (2*k + 1)*x)*(1 - (2*k + 3)*x)) ) = 1 - 2*x^2 + 31*x^4 - 692*x^6 + .... (End)

Extensions

Extended and signs tested Mar 15 1997.
More terms from Harvey P. Dale, Apr 27 2012

A081658 Triangle read by rows: T(n, k) = (-2)^k*binomial(n, k)*Euler(k, 1/2).

Original entry on oeis.org

1, 1, 0, 1, 0, -1, 1, 0, -3, 0, 1, 0, -6, 0, 5, 1, 0, -10, 0, 25, 0, 1, 0, -15, 0, 75, 0, -61, 1, 0, -21, 0, 175, 0, -427, 0, 1, 0, -28, 0, 350, 0, -1708, 0, 1385, 1, 0, -36, 0, 630, 0, -5124, 0, 12465, 0, 1, 0, -45, 0, 1050, 0, -12810, 0, 62325, 0, -50521, 1, 0, -55, 0, 1650, 0, -28182, 0, 228525, 0, -555731, 0, 1, 0, -66, 0, 2475, 0
Offset: 0

Author

Paul Barry, Mar 26 2003

Keywords

Comments

These are the coefficients of the Swiss-Knife polynomials A153641. - Peter Luschny, Jul 21 2012
Nonzero diagonals of the triangle are of the form A000364(k)*binomial(n+2k,2k)*(-1)^k.
A363393 is the dual triangle ('dual' in the sense of Euler-tangent versus Euler-secant numbers). - Peter Luschny, Jun 05 2023

Examples

			The triangle begins
[0] 1;
[1] 1, 0;
[2] 1, 0,  -1;
[3] 1, 0,  -3, 0;
[4] 1, 0,  -6, 0,   5;
[5] 1, 0, -10, 0,  25, 0;
[6] 1, 0, -15, 0,  75, 0,  -61;
[7] 1, 0, -21, 0, 175, 0, -427, 0;
...
From _Peter Luschny_, Sep 17 2021: (Start)
The triangle shows the coefficients of the following polynomials:
[1] 1;
[2] 1 -    x^2;
[3] 1 -  3*x^2;
[4] 1 -  6*x^2 +   5*x^4;
[5] 1 - 10*x^2 +  25*x^4;
[6] 1 - 15*x^2 +  75*x^4 -  61*x^6;
[7] 1 - 21*x^2 + 175*x^4 - 427*x^6;
...
These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to '-x'. The main antidiagonals consist only of ones. Substituting x <- 1 generates the Euler tangent numbers A155585. (Compare with A046739.)
(End)
		

Crossrefs

Row reversed: A119879.

Programs

  • Maple
    ogf := n -> euler(n) / (1 - x)^(n + 1):
    ser := n -> series(ogf(n), x, 16):
    T := (n, k) -> coeff(ser(k), x, n - k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Jun 05 2023
    T := (n, k) -> (-2)^k*binomial(n, k)*euler(k, 1/2):
    seq(seq(T(n, k), k = 0..n), n = 0..9);  # Peter Luschny, Apr 03 2024
  • Mathematica
    sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n - k), {k, 0, n}];
    Table[CoefficientList[sk[n, x], x] // Reverse, {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 04 2019 *)
    Flatten@Table[Binomial[n, k] EulerE[k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Jan 14 2025 *)
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if k == 0: return 1
        if k % 2 == 1:  return 0
        if k == n: return -sum(T(n, j) for j in range(0, n - 1, 2))
        return (T(n - 1, k) * n) // (n - k)
    for n in range(10):
        print([T(n, k) for k in range(n + 1)])  # Peter Luschny, Jun 05 2023
  • Sage
    R = PolynomialRing(ZZ, 'x')
    @CachedFunction
    def p(n, x) :
        if n == 0 : return 1
        return add(p(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
    def A081658_row(n) : return [R(p(n,x)).reverse()[i] for i in (0..n)]
    for n in (0..8) : print(A081658_row(n)) # Peter Luschny, Jul 20 2012
    

Formula

Coefficients of the polynomials in k in the binomial transform of the expansion of 2/(exp(kx)+exp(-kx)).
From Peter Luschny, Jul 20 2012: (Start)
p{n}(0) = Signed Euler secant numbers A122045.
p{n}(1) = Signed Euler tangent numbers A155585.
p{n}(2) has e.g.f. 2*exp(x)/(exp(-2*x)+1) A119880.
2^n*p{n}(1/2) = Signed Springer numbers A188458.
3^n*p{n}(1/3) has e.g.f. 2*exp(4*x)/(exp(6*x)+1)
4^n*p{n}(1/4) has e.g.f. 2*exp(5*x)/(exp(8*x)+1).
Row sum: A155585 (cf. A009006). Absolute row sum: A003701.
The GCD of the rows without the first column: A155457. (End)
From Peter Luschny, Jun 05 2023: (Start)
T(n, k) = [x^(n - k)] Euler(k) / (1 - x)^(k + 1).
For a recursion see the Python program.
Conjecture: If n is prime then n divides T(n, k) for 1 <= k <= n-1. (End)

Extensions

Typo in data corrected by Peter Luschny, Jul 20 2012
Error in data corrected and new name by Peter Luschny, Apr 03 2024

A181985 Generalized Euler numbers. Square array A(n,k), n >= 1, k >= 0, read by antidiagonals. A(n,k) = n-alternating permutations of length n*k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 19, 61, 1, 1, 1, 69, 1513, 1385, 1, 1, 1, 251, 33661, 315523, 50521, 1, 1, 1, 923, 750751, 60376809, 136085041, 2702765, 1, 1, 1, 3431, 17116009, 11593285251, 288294050521, 105261234643, 199360981, 1
Offset: 1

Author

Peter Luschny, Apr 04 2012

Keywords

Comments

For an integer n > 0, a permutation s = s_1...s_k is an n-alternating permutation if it has the property that s_i < s_{i+1} if and only if n divides i.
The classical Euler numbers count 2-alternating permutations of length 2n.
Ludwig Seidel gave in 1877 an efficient algorithm to compute the coefficients of sec which carries immediately over to the computation of the generalized Euler numbers (see the Maple script).

Examples

			n\k [0][1]  [2]       [3]            [4]                 [5]
[1]  1, 1,   1,        1,             1,                   1
[2]  1, 1,   5,       61,          1385,               50521  [A000364]
[3]  1, 1,  19,     1513,        315523,           136085041  [A002115]
[4]  1, 1,  69,    33661,      60376809,        288294050521  [A211212]
[5]  1, 1, 251,   750751,   11593285251,     613498040952501
[6]  1, 1, 923, 17116009, 2301250545971, 1364944703949044401
       [A030662][A211213]   [A181991]
The (n,n)-diagonal is A181992.
		

Programs

  • Maple
    A181985_list := proc(n, len) local E, dim, i, k;
    dim := n*(len-1); E := array(0..dim, 0..dim); E[0, 0] := 1;
    for i from 1 to dim do
       if i mod n = 0 then E[i, 0] := 0 ;
          for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
       else E[0, i] := 0;
          for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
       fi od;
    seq(E[0, n*k], k=0..len-1) end:
    for n from 1 to 6 do print(A181985_list(n, 6)) od;
  • Mathematica
    nmax = 9; A181985[n_, len_] := Module[{e, dim = n*(len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0 , e[i, 0] = 0 ; For[k = i-1, k >= 0, k--, e[k, i-k] = e[k+1, i-k-1] + e[k, i-k-1] ], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i-k] = e[k-1, i-k+1] + e[k-1, i-k] ]; ]]; Table[e[0, n*k], { k, 0, len-1}]]; t = Table[A181985[n, nmax], {n, 1, nmax}]; a[n_, k_] := t[[n, k+1]]; Table[a[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 27 2013, translated and adapted from Maple *)
  • Sage
    def A181985(m, n):
        shapes = ([x*m for x in p] for p in Partitions(n))
        return (-1)^n*sum((-1)^len(s)*factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
    for m in (1..6): print([A181985(m, n) for n in (0..7)]) # Peter Luschny, Aug 10 2015

A211212 4-alternating permutations of length 4n.

Original entry on oeis.org

1, 1, 69, 33661, 60376809, 288294050521, 3019098162602349, 60921822444067346581, 2159058013333667522020689, 125339574046311949415000577841, 11289082167259099068433198467575829, 1510335441937894173173702826484473600301
Offset: 0

Author

Peter Luschny, Apr 04 2012

Keywords

Comments

a(n) = A181985(4,n).

Crossrefs

Programs

  • Maple
    A211212 := proc(n) local E, dim, i, k; dim := 4*(n-1);
    E := array(0..dim, 0..dim); E[0, 0] := 1;
    for i from 1 to dim do
       if i mod 4 = 0 then E[i, 0] := 0 ;
          for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
       else E[0, i] := 0;
          for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
       fi od;
    E[0, dim] end:
    seq(A211212(i), i = 1..12);
    A211212_list := proc(size) local E, S;
    E := 2*exp(x*z)/(cosh(z)+cos(z));
    S := z -> series(E, z, 4*(size+1));
    seq((-1)^n*(4*n)!*subs(x=0, coeff(S(z), z, 4*n)), n=0..size-1) end:
    A211212_list(12); # Peter Luschny, Jun 06 2016
  • Mathematica
    A181985[n_, len_] := Module[{e, dim = n (len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0, e[i, 0] = 0; For[k = i - 1, k >= 0, k--, e[k, i - k] = e[k + 1, i - k - 1] + e[k, i - k - 1]], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i - k] = e[k - 1, i - k + 1] + e[k - 1, i - k]]]]; Table[e[0, n k], {k, 0, len - 1}]];
    a[n_] := A181985[4, n + 1] // Last;
    Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Jun 29 2019 *)
  • Sage
    # uses[A from A181936]
    A211212 = lambda n: A(4,4*n)*(-1)^n
    print([A211212(n) for n in (0..11)]) # Peter Luschny, Jan 24 2017

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(4*n,4*k) * a(n-k). - Ilya Gutkovskiy, Jan 27 2020
E.g.f.: 1/(cos(x/sqrt(2))*cosh(x/sqrt(2))) = 1 + 1*z^4/4! + 69*z^8/8! + 33661*z^12/12! + ... - Michael Wallner, Nov 17 2020
a(n) ~ 2^(10*n + 9/2) * n^(4*n + 1/2) / (cosh(Pi/2) * Pi^(4*n + 1/2) * exp(4*n)). - Vaclav Kotesovec, Nov 17 2020

A227887 O.g.f.: 1/(1 - x/(1 - 2^4*x/(1 - 3^4*x/(1 - 4^4*x/(1 - 5^4*x/(1 - 6^4*x/(1 -...))))))), a continued fraction.

Original entry on oeis.org

1, 1, 17, 1585, 485729, 372281761, 601378506737, 1820943071778385, 9489456505643743169, 79759396929125826861121, 1027412704023984825792488657, 19464301715272748317827942755185, 524230105465412991467916306841439009, 19509134827116013764271741468197795034081
Offset: 0

Author

Paul D. Hanna, Oct 26 2013

Keywords

Comments

Compare to the continued fraction for the Euler numbers (A000364):
1/(1-x/(1-2^2*x/(1-3^2*x/(1-4^2*x/(1-5^2*x/(1-6^2*x/(1-...))))))).
From Vaclav Kotesovec, Sep 24 2020: (Start)
In general, if s>0 and g.f. = 1/(1 - x/(1 - 2^s*x/(1 - 3^s*x/(1 - 4^s*x/(1 - 5^s*x/(1 - 6^s*x/(1 -...))))))), a continued fraction, then
a(n,s) ~ c(s) * d(s)^n * (n!)^s / sqrt(n), where
d(s) = (2*s*Gamma(2/s) / Gamma(1/s)^2)^s
c(s) = sqrt(s*d(s)/(2*Pi)). (End)

Examples

			G.f.: A(x) = 1 + x + 17*x^2 + 1585*x^3 + 485729*x^4 + 372281761*x^5 +...
		

Crossrefs

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (k - n - 1)^4 * T(n, k - 1) + T(n - 1, k) fi fi end:
    a := n -> T(n, n): seq(a(n), n = 0..13);  # Peter Luschny, Oct 02 2023
  • Mathematica
    nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^4*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)^4*x*CF)); polcoeff(CF, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * d^n * (n!)^4 / sqrt(n), where d = 4096 * Pi^2 / Gamma(1/4)^8 = 1.353976395034780345656335026823167975194... and c = sqrt(2*d/Pi) = 64 * sqrt(2*Pi) / Gamma(1/4)^4 = 0.9284223954634658948993105287957575... - Vaclav Kotesovec, Aug 25 2017, updated Sep 23 2020
Previous Showing 71-80 of 265 results. Next