cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 74 results. Next

A016218 Expansion of 1/((1-x)*(1-4*x)*(1-5*x)).

Original entry on oeis.org

1, 10, 71, 440, 2541, 14070, 75811, 400900, 2091881, 10808930, 55442751, 282806160, 1436400421, 7271480590, 36715316891, 185008240220, 930767824161, 4676745613050, 23475354034231, 117743274047080, 590182385739101, 2956775990710310, 14807336201610771
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Vincenzo Librandi, Feb 10 2011: (Start)
a(n) = a(n-1) + 5^(n+1) - 4^(n+1), n >= 1.
a(n) = 9*a(n-1) - 20*a(n-2) + 1, n >= 2. (End)
a(n) = 1/12 - 4^(n+2)/3 + 5^(n+2)/4. - R. J. Mathar, Mar 15 2011

A056327 Number of reversible string structures with n beads using exactly three different colors.

Original entry on oeis.org

0, 0, 1, 4, 15, 50, 160, 502, 1545, 4730, 14356, 43474, 131145, 395150, 1188580, 3572902, 10732065, 32225810, 96733636, 290322394, 871200825, 2614097750, 7843255300, 23531775502, 70599259185, 211805902490
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.
Number of set partitions for an unoriented row of n elements using exactly three different elements. An unoriented row is equivalent to its reverse. - Robert A. Russell, Oct 14 2018

Examples

			For a(4)=4, the color patterns are ABCA, ABBC, AABC, and ABAC. The first two are achiral. - _Robert A. Russell_, Oct 14 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A284949.
Cf. A056310.
Cf. A000392 (oriented), A320526 (chiral), A304973 (achiral).

Programs

  • Magma
    I:=[0,0,1,4,15,50,160]; [n le 7 select I[n] else 6*Self(n-1) -6*Self(n-2) -24*Self(n-3) +49*Self(n-4) +6*Self(n-5) -66*Self(n-6) +36*Self(n-7): n in [1..40]]; // G. C. Greubel, Oct 16 2018
  • Mathematica
    k=3; Table[(StirlingS2[n,k] + If[EvenQ[n], 2StirlingS2[n/2+1,3] - 2StirlingS2[n/2,3], StirlingS2[(n+3)/2,3] - StirlingS2[(n+1)/2,3]])/2, {n,30}] (* Robert A. Russell, Oct 15 2018 *)
    Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
    k=3; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n,30}] (* Robert A. Russell, Oct 15 2018 *)
    LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 1, 4, 15, 50, 160}, 30] (* Robert A. Russell, Oct 15 2018 *)
  • PARI
    m=40; v=concat([0,0,1,4,15,50,160], vector(m-7)); for(n=8, m, v[n] = 6*v[n-1] -6*v[n-2] -24*v[n-3] +49*v[n-4] +6*v[n-5] -66*v[n-6] +36*v[n-7] ); v \\ G. C. Greubel, Oct 16 2018
    

Formula

a(n) = A001998(n-1) - A005418(n).
G.f.: x^3*(3*x^4 - 8*x^3 + 3*x^2 + 2*x - 1)/((x-1)*(2*x-1)*(3*x-1)*(2*x^2-1)*(3*x^2-1)). - Colin Barker, Sep 23 2012
From Robert A. Russell, Oct 14 2018: (Start)
a(n) = (S2(n,k) + A(n,k))/2, where k=3 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
a(n) = (A000392(n) + A304973(n)) / 2 = A000392(n) - A320526(n) = A320526(n) + A304973(n). (End)

A134169 a(n) = 2^(n-1)*(2^n - 1) + 1.

Original entry on oeis.org

1, 2, 7, 29, 121, 497, 2017, 8129, 32641, 130817, 523777, 2096129, 8386561, 33550337, 134209537, 536854529, 2147450881, 8589869057, 34359607297, 137438691329, 549755289601, 2199022206977, 8796090925057, 35184367894529
Offset: 0

Views

Author

Ross La Haye, Jan 12 2008

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either (Case 0) x and y are disjoint, x is not a subset of y, and y is not a subset of x; or (Case 1) x and y are intersecting, but x is not a subset of y, and y is not a subset of x; or (Case 2) x and y are intersecting, and either x is a proper subset of y, or y is a proper subset of x; or (Case 3) x = y.

Examples

			a(2) = 7 because for P(A) = {{},{1},{2},{1,2}} we have for Case 0 {{1},{2}}; we have for Case 2 {{1},{1,2}}, {{2},{1,2}}; and we have for Case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under Case 1.
		

Crossrefs

Programs

Formula

a(n) = 2^(n-1)*(2^n - 1) + 1.
a(n) = StirlingS2(2^n,2^n - 1) + 1 = C(2^n,2) + 1 = A006516(n) + 1.
From R. J. Mathar, Feb 15 2010: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3).
G.f.: (1 - 5*x + 7*x^2)/((1-x) * (2*x-1) * (4*x-1)). (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Nov 03 2009
Edited by N. J. A. Sloane, Jan 25 2015 at the suggestion of Michel Marcus

A218577 Triangle read by rows: T(n,k) is the number of ascent sequences of length n with maximal element k-1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 11, 1, 1, 31, 90, 74, 20, 1, 1, 63, 301, 402, 209, 37, 1, 1, 127, 966, 1951, 1629, 590, 70, 1, 1, 255, 3025, 8869, 10839, 6430, 1685, 135, 1, 1, 511, 9330, 38720, 65720, 56878, 25313, 4870, 264, 1
Offset: 1

Views

Author

Joerg Arndt, Nov 03 2012

Keywords

Comments

Row sums are A022493.
Second column is A000225 (2^n - 1).
Third column appears to be A000392 (Stirling numbers S(n,3)).
Second diagonal (from the right) appears to be A006127 (2^n + n).

Examples

			Triangle starts:
1;
1,    1;
1,    3,     1;
1,    7,     6,      1;
1,   15,    25,     11,      1;
1,   31,    90,     74,     20,      1;
1,   63,   301,    402,    209,     37,      1;
1,  127,   966,   1951,   1629,    590,     70,     1;
1,  255,  3025,   8869,  10839,   6430,   1685,   135,     1;
1,  511,  9330,  38720,  65720,  56878,  25313,  4870,   264,   1;
1, 1023, 28501, 164676, 376114, 444337, 292695, 99996, 14209, 521, 1;
...
The 53 ascent sequences of length 5 are (dots for zeros):
[ #]     ascent-seq.   #max digit
[ 1]    [ . . . . . ]   0
[ 2]    [ . . . . 1 ]   1
[ 3]    [ . . . 1 . ]   1
[ 4]    [ . . . 1 1 ]   1
[ 5]    [ . . . 1 2 ]   2
[ 6]    [ . . 1 . . ]   1
[ 7]    [ . . 1 . 1 ]   1
[ 8]    [ . . 1 . 2 ]   2
[ 9]    [ . . 1 1 . ]   1
[10]    [ . . 1 1 1 ]   1
[11]    [ . . 1 1 2 ]   2
[12]    [ . . 1 2 . ]   2
[13]    [ . . 1 2 1 ]   2
[14]    [ . . 1 2 2 ]   2
[15]    [ . . 1 2 3 ]   3
[16]    [ . 1 . . . ]   1
[17]    [ . 1 . . 1 ]   1
[18]    [ . 1 . . 2 ]   2
[19]    [ . 1 . 1 . ]   1
[20]    [ . 1 . 1 1 ]   1
[21]    [ . 1 . 1 2 ]   2
[22]    [ . 1 . 1 3 ]   3
[23]    [ . 1 . 2 . ]   2
[24]    [ . 1 . 2 1 ]   2
[25]    [ . 1 . 2 2 ]   2
[26]    [ . 1 . 2 3 ]   3
[27]    [ . 1 1 . . ]   1
[28]    [ . 1 1 . 1 ]   1
[29]    [ . 1 1 . 2 ]   2
[...]
[49]    [ . 1 2 3 . ]   3
[50]    [ . 1 2 3 1 ]   3
[51]    [ . 1 2 3 2 ]   3
[52]    [ . 1 2 3 3 ]   3
[53]    [ . 1 2 3 4 ]   4
There is 1 sequence with maximum zero, 15 with maximum one, etc.,
therefore the fifth row is 1, 15, 25, 11, 1.
		

Crossrefs

Cf. A022493 (number of ascent sequences), A137251 (ascent sequences with k ascents), A175579 (ascent sequences with k zeros).
Cf. A218579 (ascent sequences with last zero at position k-1), A218580 (ascent sequences with first occurrence of the maximal value at position k-1), A218581 (ascent sequences with last occurrence of the maximal value at position k-1).

A053156 Number of 2-element intersecting families (with not necessarily distinct sets) whose union is an n-element set.

Original entry on oeis.org

1, 3, 10, 33, 106, 333, 1030, 3153, 9586, 29013, 87550, 263673, 793066, 2383293, 7158070, 21490593, 64504546, 193579173, 580868590, 1742867913, 5229128026, 15688432653, 47067395110, 141206379633, 423627527506, 1270899359733
Offset: 1

Views

Author

Vladeta Jovovic and Goran Kilibarda, Feb 28 2000

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 3) x = y. - Ross La Haye, Jan 12 2008
From Paul Barry, Apr 27 2003: (Start)
With offset 0, this is a(n) = (3*3^n - 2*2^n + 1)/2.
G.f. (1-3*x+3*x^2)/((1-x)*(1-2*x)*(1-3*x)).
E.g.f. (3*exp(3*x) - 2*exp(2*x) + exp(x))/2.
Binomial transform of A083329.
Second binomial transform of A040001. (End)

Crossrefs

Cf. A036239.
Column k=2 of A288638.
Third column of A294201.

Programs

  • Magma
    [(3^n-2^n+1)/2: n in [1..30]]; // G. C. Greubel, Oct 06 2017
  • Maple
    A053156:=n->(3^n - 2^n + 1)/2: seq(A053156(n), n=1..40); # Wesley Ivan Hurt, Oct 06 2017
  • Mathematica
    LinearRecurrence[{6,-11,6}, {1, 3, 10}, 50] (* or *) Table[(3^n - 2^n + 1)/2, {n,1,50}] (* G. C. Greubel, Oct 06 2017 *)
  • PARI
    a(n) = (3^n-2^n+1)/2; \\ Michel Marcus, Nov 30 2015
    

Formula

a(n) = (3^n - 2^n + 1)/2.
a(n) = StirlingS2(n+2,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 12 2008
From Colin Barker, Jul 29 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n > 3.
G.f.: x*(1-3*x+3*x^2)/((1-x)*(1-2*x)*(1-3*x)). (End)

A062254 3rd level triangle related to Eulerian numbers and binomial transforms (A062253 is second level, triangle of Eulerian numbers is first level and triangle with Z(0,0)=1 and Z(n,k)=0 otherwise is 0th level).

Original entry on oeis.org

1, 6, 0, 25, 10, 0, 90, 120, 15, 0, 301, 896, 406, 21, 0, 966, 5376, 5586, 1176, 28, 0, 3025, 28470, 55560, 27910, 3123, 36, 0, 9330, 139320, 456525, 437100, 122520, 7860, 45, 0, 28501, 646492, 3312078, 5339719, 2912833, 494802, 19096, 55, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 14 2001

Keywords

Comments

Binomial transform of n^3*k^n is ((kn)^3 + 3(kn)^2 + (1 - k)(kn))*(k + 1)^(n - 3); of n^4*k^n is ((kn)^4 + 6(kn)^3 + (7 - 4k)(kn)^2 + (1 - 4k + k^2)(kn))*(k + 1)^(n - 4); of n^5*k^n is ((kn)^5 + 10(kn)^4 + (25 - 10k)(kn)^3 + (15 - 30k + 5k^2)(kn)^2 + (1 - 11k + 11k^2 - k^3)(kn))*(k + 1)^(n - 5); of n^6*k^n is ((kn)^6 + 15(kn)^5 + (65 - 20k)(kn)^4 + (90 - 120k + 15k^2)(kn)^3 + (31 - 146k + 91k^2 - 6k^3)(kn)^2 + (1 - 26k + 66k^2 - 26k^3 + k^4)(kn))*(k + 1)^(n - 6). This sequence gives the (unsigned) polynomial coefficients of (kn)^3.

Examples

			Rows start:
 (1),
 (6,0),
 (25,10,0),
 (90,120,15,0),
 ...
		

Crossrefs

First column is A000392. Diagonals include A000007 and all but the start of A000217. Row sums are A000399.
Taking all the levels together to create a pyramid, one face would be A010054 as a triangle with a parallel face which is Pascal's triangle (A007318) with two columns removed, another face would be a triangle of Stirling numbers of the second kind (A008277) and a third face would be A000007 as a triangle, (cont.)
(cont.) with a triangle of Eulerian numbers (A008292), A062253, A062254 and A062255 as faces parallel to it. The row sums of this last group would provide a triangle of unsigned Stirling numbers of the first kind (A008275).

Programs

  • PARI
    E(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, (k+1)*E(n-1, k)+(n-k)*E(n-1, k-1)));
    A2(n, k) = if ((n<0) || (k<0), 0, (k+2)*A2(n-1, k)+(n-k)*A2(n-1, k-1)+E(n, k));
    A3(n, k) = if ((n<0) || (k<0), 0, (k+3)*A3(n-1, k)+(n-k)*A3(n-1, k-1) + A2(n, k));
    row3(n) = vector(n+1, k, A3(n,k-1)); \\ Michel Marcus, Jan 27 2025

Formula

A(n, k) = (k+3)*A(n-1, k) + (n-k)*A(n-1, k-1) + A062253(n, k).

A094374 a(n) = (3^n-1)/2 + 2^n.

Original entry on oeis.org

1, 3, 8, 21, 56, 153, 428, 1221, 3536, 10353, 30548, 90621, 269816, 805353, 2407868, 7207221, 21588896, 64701153, 193972388, 581655021, 1744440776, 5232273753, 15694724108, 47079978021, 141231545456, 423677859153, 1271000023028, 3812932960221, 11438664662936
Offset: 0

Views

Author

Paul Barry, Apr 28 2004

Keywords

Comments

Binomial transform of A094373.
Row sums of A125103. - Paul Barry, Dec 04 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 2) x = y. - Ross La Haye, Jan 11 2008
a(n) is the number of words of length n over the alphabet {0,1,2} with an even number of occurrences of the substring 01. - Daimon S. Mayorga, Sep 10 2020

Crossrefs

Programs

  • Magma
    [(3^n-1)/2+2^n: n in [0..30]]; // Vincenzo Librandi, Nov 30 2015
    
  • Mathematica
    Table[(3^n-1)/2+2^n,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{1,3,8},30] (* Harvey P. Dale, Jul 22 2013 *)
  • PARI
    a(n)=(3^n-1)/2+2^n \\ Charles R Greathouse IV, Oct 16 2015
    
  • SageMath
    [(3^n +2^(n+1) -1)//2 for n in range(31)] # G. C. Greubel, Sep 26 2024

Formula

G.f.: (1-3x+x^2)/((1-x)*(1-2x)*(1-3x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3).
a(n) = A003462(n) + A000079(n).
a(n) = Sum_{k=0..n} C(n,k)+2^k*C(n,k+1). - Paul Barry, Dec 04 2007
a(n) = StirlingS2(n+1,3) + 2*StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 11 2008
E.g.f.: exp(2*x)*(1 + sinh(x)). - G. C. Greubel, Sep 26 2024

A106800 Triangle of Stirling numbers of 2nd kind, S(n, n-k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 25, 15, 1, 0, 1, 15, 65, 90, 31, 1, 0, 1, 21, 140, 350, 301, 63, 1, 0, 1, 28, 266, 1050, 1701, 966, 127, 1, 0, 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 0, 1, 45, 750, 5880, 22827, 42525, 34105, 9330, 511, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 19 2005

Examples

			From _Gheorghe Coserea_, Jan 30 2017: (Start)
Triangle starts:
  n\k  [0]  [1]   [2]    [3]    [4]    [5]    [6]   [7] [8] [9]
  [0]   1;
  [1]   1,   0;
  [2]   1,   1,    0;
  [3]   1,   3,    1,     0;
  [4]   1,   6,    7,     1,     0;
  [5]   1,  10,   25,    15,     1,     0;
  [6]   1,  15,   65,    90,    31,     1,     0;
  [7]   1,  21,  140,   350,   301,    63,     1,    0;
  [8]   1,  28,  266,  1050,  1701,   966,   127,    1,  0;
  [9]   1,  36,  462,  2646,  6951,  7770,  3025,  255,  1,  0;
  ...
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, table 2.14.1 at page 24.

Crossrefs

See A008277 and A048993, which are the main entries for this triangle of numbers.
The Stirling1 counterpart is A054654.
Row sum: A000110.
Column 0: A000012.
Column 1: A000217.
Main Diagonal: A000007.
1st minor diagonal: A000012.
2nd minor diagonal: A000225.
3rd minor diagonal: A000392.

Programs

  • Maple
    seq(seq(Stirling2(n, n-k), k=0..n), n=0..8); # Peter Luschny, Feb 21 2021
  • Mathematica
    Table[ StirlingS2[n, m], {n, 0, 10}, {m, n, 0, -1}]//Flatten (* Robert G. Wilson v, Jan 30 2017 *)
  • PARI
    N=11; x='x+O('x^N); t='t; concat(apply(p->Vec(p), Vec(serlaplace(exp(t*(exp(x)-1))))))  \\ Gheorghe Coserea, Jan 30 2017
    {T(n, k) = my(A, B); if( n<0 || k>n, 0, A = B = exp(x + x * O(x^n)); for(i=1, n, A = x * A'); polcoeff(A / B, n-k))}; /* Michael Somos, Aug 16 2017 */
    
  • Sage
    flatten([[stirling_number2(n, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 11 2021

Formula

A(x;t) = exp(t*(exp(x)-1)) = Sum_{n>=0} P_n(t) * x^n/n!, where P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k). - Gheorghe Coserea, Jan 30 2017
Also, P_n(t) * exp(t) = (t * d/dt)^n exp(t). - Michael Somos, Aug 16 2017
T(n, k) = Sum_{j=0..k} E2(k, j)*binomial(n + k - j, 2*k), where E2(k, j) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 21 2021

A320526 a(n) is the number of chiral pairs of color patterns (set partitions) in a row of length n using exactly 3 colors (subsets).

Original entry on oeis.org

0, 0, 0, 2, 10, 40, 141, 464, 1480, 4600, 14145, 43052, 130480, 393820, 1186521, 3568784, 10725760, 32213200, 96714465, 290284052, 871142800, 2613981700, 7843080201, 23531425304, 70598731840, 211804847800, 635432109585, 1906330676252, 5719061512720, 17157321139180
Offset: 1

Views

Author

Robert A. Russell, Oct 14 2018

Keywords

Comments

Two color patterns are equivalent if we permute the colors. Chiral color patterns must not be equivalent if we reverse the order of the pattern.

Examples

			For a(4)=2, the two chiral pairs are AABC-ABCC and ABAC-ABCB.
		

Crossrefs

Column 3 of A320525.
Cf. A000392 (oriented), A056327 (unoriented), A304973 (achiral).

Programs

  • Magma
    I:=[0,0,0,2,10,40,141]; [n le 7 select I[n] else 6*Self(n-1) -6*Self(n-2) -24*Self(n-3) +49*Self(n-4) +6*Self(n-5) -66*Self(n-6) +36*Self(n-7): n in [1..40]]; // G. C. Greubel, Oct 16 2018
  • Mathematica
    k=3; Table[(StirlingS2[n,k] - If[EvenQ[n], 2StirlingS2[n/2+1,3] - 2StirlingS2[n/2,3], StirlingS2[(n+3)/2,3] - StirlingS2[(n+1)/2,3]])/2, {n, 1, 30}]
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k = 3; Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 30}]
    LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 0, 2, 10, 40,
      141}, 40]
  • PARI
    m=40; v=concat([0,0,0,2,10,40,141], vector(m-7)); for(n=8, m, v[n] = 6*v[n-1] -6*v[n-2] -24*v[n-3] +49*v[n-4] +6*v[n-5] -66*v[n-6] +36*v[n-7] ); v \\ G. C. Greubel, Oct 16 2018
    

Formula

a(n) = (S2(n,k) - A(n,k))/2, where k=3 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
G.f.: (x^3 / Product_{k=1..3} (1 - k*x) - x^3*(1 + 2 x)/((1 - 2 x^2)*(1 - 3 x^2))) / 2.
a(n) = (A000392(n) - A304973(n)) / 2 = A000392(n) - A056327(n) = A056327(n) - A304973(n).

A049434 Stirling numbers of second kind: 8th column of Stirling2 triangle A008277.

Original entry on oeis.org

1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053, 20415995028, 189036065010, 1709751003480, 15170932662679, 132511015347084, 1142399079991620, 9741955019900400, 82318282158320505, 690223721118368580, 5749622251945664950
Offset: 8

Views

Author

Keywords

References

Crossrefs

Programs

Formula

G.f.: x^8/product_{k=1..8} (1-k*x).
E.g.f.: ((exp(x)-1)^8)/8!.
a(n) = det(|s(i+8,j+7)|, 1 <= i,j <= n-8), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
Previous Showing 21-30 of 74 results. Next