A016218
Expansion of 1/((1-x)*(1-4*x)*(1-5*x)).
Original entry on oeis.org
1, 10, 71, 440, 2541, 14070, 75811, 400900, 2091881, 10808930, 55442751, 282806160, 1436400421, 7271480590, 36715316891, 185008240220, 930767824161, 4676745613050, 23475354034231, 117743274047080, 590182385739101, 2956775990710310, 14807336201610771
Offset: 0
Cf.
A016208,
A000392,
A000225,
A003462,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A016256.
A056327
Number of reversible string structures with n beads using exactly three different colors.
Original entry on oeis.org
0, 0, 1, 4, 15, 50, 160, 502, 1545, 4730, 14356, 43474, 131145, 395150, 1188580, 3572902, 10732065, 32225810, 96733636, 290322394, 871200825, 2614097750, 7843255300, 23531775502, 70599259185, 211805902490
Offset: 1
For a(4)=4, the color patterns are ABCA, ABBC, AABC, and ABAC. The first two are achiral. - _Robert A. Russell_, Oct 14 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
I:=[0,0,1,4,15,50,160]; [n le 7 select I[n] else 6*Self(n-1) -6*Self(n-2) -24*Self(n-3) +49*Self(n-4) +6*Self(n-5) -66*Self(n-6) +36*Self(n-7): n in [1..40]]; // G. C. Greubel, Oct 16 2018
-
k=3; Table[(StirlingS2[n,k] + If[EvenQ[n], 2StirlingS2[n/2+1,3] - 2StirlingS2[n/2,3], StirlingS2[(n+3)/2,3] - StirlingS2[(n+1)/2,3]])/2, {n,30}] (* Robert A. Russell, Oct 15 2018 *)
Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
k=3; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n,30}] (* Robert A. Russell, Oct 15 2018 *)
LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 1, 4, 15, 50, 160}, 30] (* Robert A. Russell, Oct 15 2018 *)
-
m=40; v=concat([0,0,1,4,15,50,160], vector(m-7)); for(n=8, m, v[n] = 6*v[n-1] -6*v[n-2] -24*v[n-3] +49*v[n-4] +6*v[n-5] -66*v[n-6] +36*v[n-7] ); v \\ G. C. Greubel, Oct 16 2018
A134169
a(n) = 2^(n-1)*(2^n - 1) + 1.
Original entry on oeis.org
1, 2, 7, 29, 121, 497, 2017, 8129, 32641, 130817, 523777, 2096129, 8386561, 33550337, 134209537, 536854529, 2147450881, 8589869057, 34359607297, 137438691329, 549755289601, 2199022206977, 8796090925057, 35184367894529
Offset: 0
a(2) = 7 because for P(A) = {{},{1},{2},{1,2}} we have for Case 0 {{1},{2}}; we have for Case 2 {{1},{1,2}}, {{2},{1,2}}; and we have for Case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under Case 1.
-
Table[EulerE[2,2^n],{n,0,60}]/2+1 (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
LinearRecurrence[{7,-14,8},{1,2,7},30] (* Harvey P. Dale, Mar 12 2013 *)
A218577
Triangle read by rows: T(n,k) is the number of ascent sequences of length n with maximal element k-1.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 11, 1, 1, 31, 90, 74, 20, 1, 1, 63, 301, 402, 209, 37, 1, 1, 127, 966, 1951, 1629, 590, 70, 1, 1, 255, 3025, 8869, 10839, 6430, 1685, 135, 1, 1, 511, 9330, 38720, 65720, 56878, 25313, 4870, 264, 1
Offset: 1
Triangle starts:
1;
1, 1;
1, 3, 1;
1, 7, 6, 1;
1, 15, 25, 11, 1;
1, 31, 90, 74, 20, 1;
1, 63, 301, 402, 209, 37, 1;
1, 127, 966, 1951, 1629, 590, 70, 1;
1, 255, 3025, 8869, 10839, 6430, 1685, 135, 1;
1, 511, 9330, 38720, 65720, 56878, 25313, 4870, 264, 1;
1, 1023, 28501, 164676, 376114, 444337, 292695, 99996, 14209, 521, 1;
...
The 53 ascent sequences of length 5 are (dots for zeros):
[ #] ascent-seq. #max digit
[ 1] [ . . . . . ] 0
[ 2] [ . . . . 1 ] 1
[ 3] [ . . . 1 . ] 1
[ 4] [ . . . 1 1 ] 1
[ 5] [ . . . 1 2 ] 2
[ 6] [ . . 1 . . ] 1
[ 7] [ . . 1 . 1 ] 1
[ 8] [ . . 1 . 2 ] 2
[ 9] [ . . 1 1 . ] 1
[10] [ . . 1 1 1 ] 1
[11] [ . . 1 1 2 ] 2
[12] [ . . 1 2 . ] 2
[13] [ . . 1 2 1 ] 2
[14] [ . . 1 2 2 ] 2
[15] [ . . 1 2 3 ] 3
[16] [ . 1 . . . ] 1
[17] [ . 1 . . 1 ] 1
[18] [ . 1 . . 2 ] 2
[19] [ . 1 . 1 . ] 1
[20] [ . 1 . 1 1 ] 1
[21] [ . 1 . 1 2 ] 2
[22] [ . 1 . 1 3 ] 3
[23] [ . 1 . 2 . ] 2
[24] [ . 1 . 2 1 ] 2
[25] [ . 1 . 2 2 ] 2
[26] [ . 1 . 2 3 ] 3
[27] [ . 1 1 . . ] 1
[28] [ . 1 1 . 1 ] 1
[29] [ . 1 1 . 2 ] 2
[...]
[49] [ . 1 2 3 . ] 3
[50] [ . 1 2 3 1 ] 3
[51] [ . 1 2 3 2 ] 3
[52] [ . 1 2 3 3 ] 3
[53] [ . 1 2 3 4 ] 4
There is 1 sequence with maximum zero, 15 with maximum one, etc.,
therefore the fifth row is 1, 15, 25, 11, 1.
- Joerg Arndt and Alois P. Heinz, Rows n = 1..141, flattened (first 15 rows from Joerg Arndt)
- Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes, Sergey Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations, arXiv:0806.0666 [math.CO], 2008-2009.
- William Y. C. Chen, Alvin Y.L. Dai, Theodore Dokos, Tim Dwyer and Bruce E. Sagan, On 021-Avoiding Ascent Sequences, The Electronic Journal of Combinatorics Volume 20, Issue 1 (2013), #P76.
Cf.
A022493 (number of ascent sequences),
A137251 (ascent sequences with k ascents),
A175579 (ascent sequences with k zeros).
Cf.
A218579 (ascent sequences with last zero at position k-1),
A218580 (ascent sequences with first occurrence of the maximal value at position k-1),
A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
A053156
Number of 2-element intersecting families (with not necessarily distinct sets) whose union is an n-element set.
Original entry on oeis.org
1, 3, 10, 33, 106, 333, 1030, 3153, 9586, 29013, 87550, 263673, 793066, 2383293, 7158070, 21490593, 64504546, 193579173, 580868590, 1742867913, 5229128026, 15688432653, 47067395110, 141206379633, 423627527506, 1270899359733
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, in Russian, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, English translation, in Discrete Mathematics and Applications, 9, (1999), no. 6.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
-
[(3^n-2^n+1)/2: n in [1..30]]; // G. C. Greubel, Oct 06 2017
-
A053156:=n->(3^n - 2^n + 1)/2: seq(A053156(n), n=1..40); # Wesley Ivan Hurt, Oct 06 2017
-
LinearRecurrence[{6,-11,6}, {1, 3, 10}, 50] (* or *) Table[(3^n - 2^n + 1)/2, {n,1,50}] (* G. C. Greubel, Oct 06 2017 *)
-
a(n) = (3^n-2^n+1)/2; \\ Michel Marcus, Nov 30 2015
A062254
3rd level triangle related to Eulerian numbers and binomial transforms (A062253 is second level, triangle of Eulerian numbers is first level and triangle with Z(0,0)=1 and Z(n,k)=0 otherwise is 0th level).
Original entry on oeis.org
1, 6, 0, 25, 10, 0, 90, 120, 15, 0, 301, 896, 406, 21, 0, 966, 5376, 5586, 1176, 28, 0, 3025, 28470, 55560, 27910, 3123, 36, 0, 9330, 139320, 456525, 437100, 122520, 7860, 45, 0, 28501, 646492, 3312078, 5339719, 2912833, 494802, 19096, 55, 0
Offset: 0
Rows start:
(1),
(6,0),
(25,10,0),
(90,120,15,0),
...
Taking all the levels together to create a pyramid, one face would be
A010054 as a triangle with a parallel face which is Pascal's triangle (
A007318) with two columns removed, another face would be a triangle of Stirling numbers of the second kind (
A008277) and a third face would be
A000007 as a triangle, (cont.)
(cont.) with a triangle of Eulerian numbers (
A008292),
A062253,
A062254 and
A062255 as faces parallel to it. The row sums of this last group would provide a triangle of unsigned Stirling numbers of the first kind (
A008275).
-
E(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, (k+1)*E(n-1, k)+(n-k)*E(n-1, k-1)));
A2(n, k) = if ((n<0) || (k<0), 0, (k+2)*A2(n-1, k)+(n-k)*A2(n-1, k-1)+E(n, k));
A3(n, k) = if ((n<0) || (k<0), 0, (k+3)*A3(n-1, k)+(n-k)*A3(n-1, k-1) + A2(n, k));
row3(n) = vector(n+1, k, A3(n,k-1)); \\ Michel Marcus, Jan 27 2025
A094374
a(n) = (3^n-1)/2 + 2^n.
Original entry on oeis.org
1, 3, 8, 21, 56, 153, 428, 1221, 3536, 10353, 30548, 90621, 269816, 805353, 2407868, 7207221, 21588896, 64701153, 193972388, 581655021, 1744440776, 5232273753, 15694724108, 47079978021, 141231545456, 423677859153, 1271000023028, 3812932960221, 11438664662936
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- A. Prasad, Equivalence classes of nodes in trees and rational generating functions, arXiv preprint arXiv:1407.5284 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
-
[(3^n-1)/2+2^n: n in [0..30]]; // Vincenzo Librandi, Nov 30 2015
-
Table[(3^n-1)/2+2^n,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{1,3,8},30] (* Harvey P. Dale, Jul 22 2013 *)
-
a(n)=(3^n-1)/2+2^n \\ Charles R Greathouse IV, Oct 16 2015
-
[(3^n +2^(n+1) -1)//2 for n in range(31)] # G. C. Greubel, Sep 26 2024
A106800
Triangle of Stirling numbers of 2nd kind, S(n, n-k), n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 25, 15, 1, 0, 1, 15, 65, 90, 31, 1, 0, 1, 21, 140, 350, 301, 63, 1, 0, 1, 28, 266, 1050, 1701, 966, 127, 1, 0, 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 0, 1, 45, 750, 5880, 22827, 42525, 34105, 9330, 511, 1, 0
Offset: 0
From _Gheorghe Coserea_, Jan 30 2017: (Start)
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 1;
[1] 1, 0;
[2] 1, 1, 0;
[3] 1, 3, 1, 0;
[4] 1, 6, 7, 1, 0;
[5] 1, 10, 25, 15, 1, 0;
[6] 1, 15, 65, 90, 31, 1, 0;
[7] 1, 21, 140, 350, 301, 63, 1, 0;
[8] 1, 28, 266, 1050, 1701, 966, 127, 1, 0;
[9] 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 0;
...
(End)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, table 2.14.1 at page 24.
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, and O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint arXiv:1402.2960 [math.CO], 2014.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Eric Weisstein's World of Mathematics, Bell Polynomial.
See
A008277 and
A048993, which are the main entries for this triangle of numbers.
The Stirling1 counterpart is
A054654.
-
seq(seq(Stirling2(n, n-k), k=0..n), n=0..8); # Peter Luschny, Feb 21 2021
-
Table[ StirlingS2[n, m], {n, 0, 10}, {m, n, 0, -1}]//Flatten (* Robert G. Wilson v, Jan 30 2017 *)
-
N=11; x='x+O('x^N); t='t; concat(apply(p->Vec(p), Vec(serlaplace(exp(t*(exp(x)-1)))))) \\ Gheorghe Coserea, Jan 30 2017
{T(n, k) = my(A, B); if( n<0 || k>n, 0, A = B = exp(x + x * O(x^n)); for(i=1, n, A = x * A'); polcoeff(A / B, n-k))}; /* Michael Somos, Aug 16 2017 */
-
flatten([[stirling_number2(n, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 11 2021
A320526
a(n) is the number of chiral pairs of color patterns (set partitions) in a row of length n using exactly 3 colors (subsets).
Original entry on oeis.org
0, 0, 0, 2, 10, 40, 141, 464, 1480, 4600, 14145, 43052, 130480, 393820, 1186521, 3568784, 10725760, 32213200, 96714465, 290284052, 871142800, 2613981700, 7843080201, 23531425304, 70598731840, 211804847800, 635432109585, 1906330676252, 5719061512720, 17157321139180
Offset: 1
For a(4)=2, the two chiral pairs are AABC-ABCC and ABAC-ABCB.
-
I:=[0,0,0,2,10,40,141]; [n le 7 select I[n] else 6*Self(n-1) -6*Self(n-2) -24*Self(n-3) +49*Self(n-4) +6*Self(n-5) -66*Self(n-6) +36*Self(n-7): n in [1..40]]; // G. C. Greubel, Oct 16 2018
-
k=3; Table[(StirlingS2[n,k] - If[EvenQ[n], 2StirlingS2[n/2+1,3] - 2StirlingS2[n/2,3], StirlingS2[(n+3)/2,3] - StirlingS2[(n+1)/2,3]])/2, {n, 1, 30}]
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
k = 3; Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 30}]
LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 0, 2, 10, 40,
141}, 40]
-
m=40; v=concat([0,0,0,2,10,40,141], vector(m-7)); for(n=8, m, v[n] = 6*v[n-1] -6*v[n-2] -24*v[n-3] +49*v[n-4] +6*v[n-5] -66*v[n-6] +36*v[n-7] ); v \\ G. C. Greubel, Oct 16 2018
A049434
Stirling numbers of second kind: 8th column of Stirling2 triangle A008277.
Original entry on oeis.org
1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053, 20415995028, 189036065010, 1709751003480, 15170932662679, 132511015347084, 1142399079991620, 9741955019900400, 82318282158320505, 690223721118368580, 5749622251945664950
Offset: 8
-
lst={};Do[f=StirlingS2[n, 8];AppendTo[lst, f], {n, 8, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x) (1 - 6 x) (1 - 7 x) (1 - 8 x)), {x, 0, 25}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
Comments