cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 180 results. Next

A224353 T(n,k)=Number of nXk 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

3, 6, 9, 10, 36, 27, 15, 100, 216, 81, 21, 225, 788, 1296, 243, 28, 441, 2321, 5880, 7776, 729, 36, 784, 5840, 19608, 45064, 46656, 2187, 45, 1296, 13052, 57387, 160362, 349280, 279936, 6561, 55, 2025, 26610, 151010, 495985, 1351748, 2710892, 1679616
Offset: 1

Views

Author

R. H. Hardin Apr 04 2013

Keywords

Comments

Table starts
.....3........6.........10.........15..........21..........28...........36
.....9.......36........100........225.........441.........784.........1296
....27......216........788.......2321........5840.......13052........26610
....81.....1296.......5880......19608.......57387......151010.......363392
...243.....7776......45064.....160362......495985.....1421762......3816783
...729....46656.....349280....1351748.....4231138....12340932.....34697869
..2187...279936....2710892...11704964....37433596...107694133....300892325
..6561..1679616...21021916..102319662...342170839...977742699...2654062881
.19683.10077696..163012744..895494806..3178789749..9202126546..24422915139
.59049.60466176.1264202660.7833508842.29672959682.88363107023.233364588801

Examples

			Some solutions for n=3 k=4
..1..1..1..2....0..0..1..1....0..0..2..2....1..2..2..2....0..2..2..2
..1..1..1..2....0..0..2..2....0..1..1..2....0..1..2..2....1..1..2..2
..0..0..1..2....0..1..1..1....0..1..1..2....1..2..2..2....1..1..1..2
		

Crossrefs

Column 1 is A000244
Column 2 is A000400
Row 1 is A000217(n+1)
Row 2 is A000537(n+1)

Formula

Empirical: columns k=1..6 have recurrences of order 1,1,10,26,56,98
Empirical: rows n=1..7 are polynomials of degree 2*n for k>0,0,1,3,5,7,9

A275228 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,1) or (-1,0) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 14, 36, 11, 4, 41, 216, 61, 27, 8, 122, 1296, 339, 187, 66, 16, 365, 7776, 1885, 1302, 648, 162, 32, 1094, 46656, 10483, 9075, 6448, 2282, 404, 64, 3281, 279936, 58301, 63267, 64248, 32388, 8134, 1007, 128, 9842, 1679616, 324243, 441090, 640250
Offset: 1

Views

Author

R. H. Hardin, Jul 20 2016

Keywords

Comments

Table starts
...1....2......5.......14.........41.........122...........365............1094
...1....6.....36......216.......1296........7776.........46656..........279936
...2...11.....61......339.......1885.......10483.........58301..........324243
...4...27....187.....1302.......9075.......63267........441090.........3075255
...8...66....648.....6448......64248......640250.......6380362........63583084
..16..162...2282....32388.....460034.....6534900......92831330......1318716132
..32..404...8134...164645....3334854....67550874....1368326231.....27717164160
..64.1007..29027...844176...24595019...716735348...20887845278....608741311725
.128.2512.103456..4319300..181187962..7605814181..319348056936..13409199459965
.256.6271.368889.22083548.1332436071.80496567059.4865299894416.294093896351121

Examples

			Some solutions for n=4 k=4
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..2. .0..0..0..0
..2..0..1..0. .1..0..1..0. .1..0..1..2. .1..0..2..0. .1..2..1..2
..0..2..0..2. .2..1..0..1. .2..2..2..1. .2..1..0..2. .2..1..2..1
..2..0..2..0. .1..2..2..0. .1..0..1..0. .1..0..2..0. .0..0..1..0
		

Crossrefs

Column 1 is A000079(n-2).
Row 1 is A007051(n-1).
Row 2 is A000400(n-1).
Row 4 is A078100.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 3*a(n-1) -a(n-2) -2*a(n-4) +a(n-5) for n>6
k=3: [order 9] for n>13
k=4: [order 31] for n>35
k=5: [order 81] for n>86
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1)
n=3: a(n) = 7*a(n-1) -8*a(n-2)
n=4: a(n) = 9*a(n-1) -15*a(n-2) +6*a(n-3)
n=5: a(n) = 11*a(n-1) -9*a(n-2) -15*a(n-3) +20*a(n-4) -6*a(n-5) for n>6
n=6: a(n) = 19*a(n-1) -75*a(n-2) +101*a(n-3) -44*a(n-4) for n>5
n=7: a(n) = 20*a(n-1) +57*a(n-2) -1206*a(n-3) +3096*a(n-4) +2306*a(n-5) -16957*a(n-6) +20440*a(n-7) -7755*a(n-8) for n>9

A009980 Powers of 36.

Original entry on oeis.org

1, 36, 1296, 46656, 1679616, 60466176, 2176782336, 78364164096, 2821109907456, 101559956668416, 3656158440062976, 131621703842267136, 4738381338321616896, 170581728179578208256, 6140942214464815497216, 221073919720733357899776, 7958661109946400884391936
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 36), L(1, 36), P(1, 36), T(1, 36). Essentially same as Pisot sequences E(36, 1296), L(36, 1296), P(36, 1296), T(36, 1296). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 36-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
See David Applegate's comment in A000244 from Feb 20 2017 for a proof of Janjic's assertion. - Alonso del Arte, Sep 03 2017

Crossrefs

Programs

Formula

G.f.: 1/(1-36*x). - Philippe Deléham, Nov 24 2008
a(n) = 36^n; a(n) = 36*a(n-1) for n > 0, a(0) = 1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: exp(36*x).
a(n) = A000079(n)*A001027(n) = A000400(A005843(n)). (End)

A038255 Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j).

Original entry on oeis.org

1, 6, 1, 36, 12, 1, 216, 108, 18, 1, 1296, 864, 216, 24, 1, 7776, 6480, 2160, 360, 30, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 1679616, 2239488, 1306368, 435456, 90720, 12096, 1008
Offset: 0

Views

Author

Keywords

Comments

T(n,k) = A013613(n,n-k), 0 <= k <= n. - Reinhard Zumkeller, Nov 21 2013

Examples

			1
6, 1
36, 12, 1
216, 108, 18, 1
1296, 864, 216, 24, 1
7776, 6480, 2160, 360, 30, 1
46656, 46656, 19440, 4320, 540, 36, 1
279936, 326592, 163296, 45360, 7560, 756, 42, 1
1679616, 2239488, 1306368, 435456, 90720, 12096, 1008, 48, 1
		

Crossrefs

Cf. A038207.
Cf. A000420 (row sums), A013613 (mirrored), A110440, A007318, A000400.

Programs

  • Haskell
    a038255 n k = a038255_tabl !! n !! k
    a038255_row n = a038255_tabl !! n
    a038255_tabl = map reverse a013613_tabl
    -- Reinhard Zumkeller, Nov 21 2013
  • Maple
    for i from 0 to 8 do seq(binomial(i, j)*6^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
  • Mathematica
    Table[Binomial[n,m]6^(n-m),{n,0,10},{m,0,n}]//Flatten (* Harvey P. Dale, Dec 25 2019 *)

Formula

G.f.: 1/(1 - 6*x - x*y). - Ilya Gutkovskiy, Apr 21 2017

A212700 a(n) = 5*n*6^(n-1).

Original entry on oeis.org

5, 60, 540, 4320, 32400, 233280, 1632960, 11197440, 75582720, 503884800, 3325639680, 21767823360, 141490851840, 914248581120, 5877312307200, 37614798766080, 239794342133760, 1523399350026240, 9648195883499520, 60935974001049600, 383896636206612480, 2413064570441564160
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Main transitions in systems of n particles with spin 5/2.
Refer to the general explanation in A212697.
This particular sequence is obtained for base b=6, corresponding to spin S=(b-1)/2=5/2.
Arithmetic derivative of 6^n: a(n) = A003415(6^n). - Bruno Berselli, Oct 22 2013

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212701, A212702, A212703, A212704 (b = 2, 3, 4, 5, 7, 8, 9, 10).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[5 x/(6 x - 1)^2, {x, 0, 18}], x] (* or *)
    Array[5 # 6^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212700.txt", n, " ", mtrans(n, 6)))

Formula

a(n) = n*(b-1)*b^(n-1): for this sequence, set b=6.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 5*x/(6*x-1)^2.
a(n) = 5*A053469(n). (End)
From Elmo R. Oliveira, May 14 2025: (Start)
E.g.f.: 5*x*exp(6*x).
a(n) = A008587(n)*A000400(n-1).
a(n) = 12*a(n-1) - 36*a(n-2) for n > 2. (End)

A275142 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 1, 2, 2, 6, 5, 4, 16, 36, 14, 8, 48, 80, 216, 41, 16, 144, 224, 400, 1296, 122, 32, 432, 528, 1088, 2000, 7776, 365, 64, 1296, 1216, 2320, 5248, 10000, 46656, 1094, 128, 3888, 2816, 6464, 9744, 25344, 50000, 279936, 3281, 256, 11664, 6544, 17872, 32384, 41360
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Table starts
....1........1.......2........4........8........16........32.........64
....2........6......16.......48......144.......432......1296.......3888
....5.......36......80......224......528......1216......2816.......6544
...14......216.....400.....1088.....2320......6464.....17872......49792
...41.....1296....2000.....5248.....9744.....32384....107472.....362176
..122.....7776...10000....25344....41360....165568....663904....2695808
..365....46656...50000...122368...175120....841536...4055152...19906560
.1094...279936..250000...590848...741904...4283968..24875600..147762240
.3281..1679616.1250000..2852864..3142672..21800000.152379136.1093999424
.9842.10077696.6250000.13774848.13312656.110943552.933805200.8109111360

Examples

			Some solutions for n=5 k=4
..0..1..2..1. .0..1..0..1. .0..1..0..2. .0..1..2..1. .0..1..2..0
..2..0..1..0. .0..2..1..2. .2..0..1..2. .2..0..2..0. .0..1..2..0
..2..0..1..2. .1..2..1..0. .1..2..1..2. .2..0..1..2. .2..0..2..0
..1..2..0..1. .0..1..2..1. .0..2..0..1. .2..0..1..2. .2..0..1..2
..0..2..0..1. .2..1..2..0. .0..1..2..0. .1..2..0..2. .0..1..0..1
		

Crossrefs

Column 1 is A007051(n-1).
Column 2 is A000400(n-1).
Column 3 is A055842.
Row 1 is A000079(n-2).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 6*a(n-1)
k=3: a(n) = 5*a(n-1) for n>2
k=4: a(n) = 4*a(n-1) +4*a(n-2) for n>3
k=5: a(n) = 3*a(n-1) +5*a(n-2) +a(n-3) for n>4
k=6: a(n) = 3*a(n-1) +10*a(n-2) +4*a(n-3) -4*a(n-4) for n>6
k=7: a(n) = 3*a(n-1) +18*a(n-2) +11*a(n-3) -23*a(n-4) -4*a(n-5) for n>7
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 3*a(n-1) for n>3
n=3: a(n) = 3*a(n-1) -2*a(n-2) +a(n-3) for n>5
n=4: a(n) = 5*a(n-1) -9*a(n-2) +10*a(n-3) -6*a(n-4) +a(n-5) for n>9
n=5: [order 8] for n>12
n=6: [order 13] for n>18
n=7: [order 21] for n>27

A089504 A generalization of triangle A071951 (Legendre-Stirling).

Original entry on oeis.org

1, 6, 1, 36, 30, 1, 216, 756, 90, 1, 1296, 18360, 6156, 210, 1, 7776, 441936, 387720, 31356, 420, 1, 46656, 10614240, 23705136, 4150440, 119556, 756, 1, 279936, 254788416, 1432922400, 521757936, 29257200, 373572, 1260, 1, 1679616
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

This triangle underlies the array entry A078741 ((3,3)-generalized Stirling2).
For the computation of the column sequences see A089505.

Examples

			[1]; [6,1]; [36,30,1]; [216,756,90,1]; ...
a(3,2) = 30 = ((-1)*(3*2*1)^1 + 4*(4*3*2)^1)/3.
		

Crossrefs

Cf. A071951 (Legendre-Stirling, (2, 2) case).
The column sequences (without leading zeros) are A000400 (powers of 6), A089507, A089513-4, etc.

Programs

  • Mathematica
    max = 10; f[m_] := 1/Product[1 - FactorialPower[r + 2, 3]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max - m + 1), x]; a[n_, m_] := col[m][[n - m + 1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)

Formula

G.f. for m-th column sequence (without leading zeros and m>=1) is 1/Product_{r=1..m} 1-fallfac(r+2, 3)*x with fallfac(n, k) := A008279(n, k) (falling factorials).
a(n, m) = Sum_{p=1..m} A089505(m, p)*((p+2)*(p+1)*p)^(n-m))/D(m) if n>=m>=1 else 0; with D(m) := A089506(m).

A090018 a(n) = 6*a(n-1) + 3*a(n-2) for n > 2, a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 39, 252, 1629, 10530, 68067, 439992, 2844153, 18384894, 118841823, 768205620, 4965759189, 32099171994, 207492309531, 1341251373168, 8669985167601, 56043665125110, 362271946253463, 2341762672896108, 15137391876137037, 97849639275510546, 632510011281474387
Offset: 0

Views

Author

Paul Barry, Nov 19 2003

Keywords

Comments

From Johannes W. Meijer, Aug 09 2010: (Start)
a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner or side square on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180032. The central square leads to A180028. (End)

Crossrefs

Sequences with g.f. of the form 1/(1 - 6*x - k*x^2): A106392 (k=-10), A027471 (k=-9), A006516 (k=-8), A081179 (k=-7), A030192 (k=-6), A003463 (k=-5), A084326 (k=-4), A138395 (k=-3), A154244 (k=-2), A001109 (k=-1), A000400 (k=0), A005668 (k=1), A135030 (k=2), this sequence (k=3), A135032 (k=4), A015551 (k=5), A057089 (k=6), A015552 (k=7), A189800 (k=8), A189801 (k=9), A190005 (k=10), A015553 (k=11).

Programs

  • Magma
    [n le 2 select 6^(n-1) else 6*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
    
  • Maple
    a:= n-> (<<0|1>, <3|6>>^n. <<1,6>>)[1,1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 17 2011
  • Mathematica
    Join[{a=1,b=6},Table[c=6*b+3*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    LinearRecurrence[{6,3}, {1,6}, 41] (* G. C. Greubel, Oct 10 2022 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-6*x-3*x^2)) \\ G. C. Greubel, Jan 24 2018
  • Sage
    [lucas_number1(n,6,-3) for n in range(1, 31)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = (3+2*sqrt(3))^n*(sqrt(3)/4+1/2) + (1/2-sqrt(3)/4)*(3-2*sqrt(3))^n.
a(n) = (-i*sqrt(3))^n * ChebyshevU(n, isqrt(3)), i^2=-1.
From Johannes W. Meijer, Aug 09 2010: (Start)
G.f.: 1/(1 - 6*x - 3*x^2).
Limit_{k->oo} a(n+k)/a(k) = A141041(n) + A090018(n-1)*sqrt(12) for n >= 1.
Limit_{n->oo} A141041(n)/A090018(n-1) = sqrt(12). (End)
a(n) = Sum_{k=0..n} A099089(n,k)*3^k. - Philippe Deléham, Nov 21 2011
E.g.f.: exp(3*x)*(2*cosh(2*sqrt(3)*x) + sqrt(3)*sinh(2*sqrt(3)*x))/2. - Stefano Spezia, Apr 23 2025

Extensions

Typo in Mathematica program corrected by Vincenzo Librandi, Nov 15 2011

A167747 a(n) = phi(6^n).

Original entry on oeis.org

1, 2, 12, 72, 432, 2592, 15552, 93312, 559872, 3359232, 20155392, 120932352, 725594112, 4353564672, 26121388032, 156728328192, 940369969152, 5642219814912, 33853318889472, 203119913336832, 1218719480020992, 7312316880125952, 43873901280755712, 263243407684534272
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[6^n],{n,0,40}]
  • PARI
    a(n) = eulerphi(6^n); \\ Michel Marcus, Jan 02 2021

Formula

a(n+1) = 2*6^n. - Charles R Greathouse IV, Nov 12 2009
G.f.: (1-4x)/(1-6x). - Philippe Deléham, Oct 10 2011
a(n) = ((8*n-4)*a(n-1)-12*(n-2)*a(n-2))/n, a(0)=1, a(1)=2. - Sergei N. Gladkovskii, Jul 19 2012
Sum_{n>=0} 1/a(n) = 8/5. - Amiram Eldar, Jan 02 2021
a(n) = A000010(A000400(n)). - Michel Marcus, Jan 02 2021
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} (-1)^n/a(n) = 4/7.
Product_{n>=1} (1 - 1/a(n)) = A132022. (End)

A180028 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 3*x)/(1 - 6*x - 3*x^2).

Original entry on oeis.org

1, 9, 57, 369, 2385, 15417, 99657, 644193, 4164129, 26917353, 173996505, 1124731089, 7270376049, 46996449561, 303789825513, 1963728301761, 12693739287105, 82053620627913, 530402941628793, 3428578511656497
Offset: 0

Views

Author

Johannes W. Meijer, Aug 09 2010; edited Jun 21 2013

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the center square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen.
On a 3 X 3 chessboard there are 2^9 = 512 ways to explode with fury on the center square (off the center square the piece behaves like a normal queen). The red queen is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program and A180140. For the center square the 512 red queens lead to 17 red queen sequences, see the overview of red queen sequences and the crossreferences.
The sequence above corresponds to just one red queen vector, i.e., A[5] = [111 111 111] vector. The other squares lead for this vector to A090018.
This sequence belongs to a family of sequences with g.f. (1+k*x)/(1 - 6*x - k*x^2). The members of this family that are red queen sequences are A180028 (k=3; this sequence), A180029 (k=2), A015451 (k=1), A000400 (k=0), A001653 (k=-1), A180034 (k=-2), A084120 (k=-3), A154626 (k=-4) and A000012 (k=-5). Other members of this family are A123362 (k=5), 6*A030192(k=-6).
Inverse binomial transform of A107903.

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984.

Crossrefs

Cf. A180140 (berserker sequences)
Cf. A180032 (Corner and side squares).
Cf. Red queen sequences center square [decimal value A[5]]: A180028 [511], A180029 [255], A180031 [495], A015451 [127], A152240 [239], A000400 [63], A057088 [47], A001653 [31], A122690 [15], A180034 [23], A180036 [7], A084120 [19], A180038 [3], A154626 [17], A015449 [1], A000012 [16], A000007 [0].

Programs

  • Magma
    I:=[1,9]; [n le 2 select I[n] else 6*Self(n-1)+3*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 15 2011
  • Maple
    nmax:=19; m:=5; A[1]:=[0,1,1,1,1,0,1,0,1]: A[2]:=[1,0,1,1,1,1,0,1,0]: A[3]:=[1,1,0,0,1,1,1,0,1]: A[4]:=[1,1,0,0,1,1,1,1,0]: A[5]:=[1,1,1,1,1,1,1,1,1]: A[6]:=[0,1,1,1,1,0,0,1,1]: A[7]:=[1,0,1,1,1,0,0,1,1]: A[8]:=[0,1,0,1,1,1,1,0,1]: A[9]:=[1,0,1,0,1,1,1,1,0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{6,3},{1,9},50] (* Vincenzo Librandi, Nov 15 2011 *)

Formula

G.f.: (1+3*x)/(1 - 6*x - 3*x^2).
a(n) = 6*a(n-1) + 3*a(n-2) with a(0) = 1 and a(1) = 9.
a(n) = ((1-A)*A^(-n-1) + (1-B)*B^(-n-1))/4 with A=(-1+2*sqrt(3)/3) and B=(-1-2*sqrt(3)/3).
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n-1)*A108411(n+1)/(A041017(n-1)*sqrt(12) - A041016(n-1)) for n >= 1.
Previous Showing 41-50 of 180 results. Next