cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 104 results. Next

A004814 Numbers that are the sum of 3 positive 11th powers.

Original entry on oeis.org

3, 2050, 4097, 6144, 177149, 179196, 181243, 354295, 356342, 531441, 4194306, 4196353, 4198400, 4371452, 4373499, 4548598, 8388609, 8390656, 8565755, 12582912, 48828127, 48830174, 48832221, 49005273, 49007320, 49182419, 53022430
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
204800049005272 is in the sequence as 204800049005272 = 3^11 + 5^11 + 20^11.
2518268235958260 is in the sequence as 2518268235958260 = 16^11 + 19^11 + 25^11.
3786934745885995 is in the sequence as 3786934745885995 = 10^11 + 19^11 + 26^11. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A024796 Numbers expressible in more than one way as i^2 + j^2 + k^2, where 1 <= i <= j <= k.

Original entry on oeis.org

27, 33, 38, 41, 51, 54, 57, 59, 62, 66, 69, 74, 75, 77, 81, 83, 86, 89, 90, 94, 98, 99, 101, 102, 105, 107, 108, 110, 113, 114, 117, 118, 121, 122, 123, 125, 126, 129, 131, 132, 134, 137, 138, 139, 141, 146, 147, 149, 150, 152, 153, 154, 155, 158, 161, 162, 164, 165, 166, 170
Offset: 1

Views

Author

Keywords

Comments

a(n) multiplied by (h^2)/(8*m*a^2) is the n-th energy level exhibiting accidental degeneracy, for a quantum mechanical particle of mass m in a cubic box of side length a (h is Planck's constant). - A. Timothy Royappa, Feb 12 2019

Crossrefs

Programs

  • Mathematica
    okQ[n_]:= Length[Select[PowersRepresentations[n, 3, 2], !MemberQ[#, 0] &]] > 1; (* Jinyuan Wang, Feb 12 2019 *)
  • PARI
    is(n)=if(n<27, return(0)); if(n%4==0, return(is(n/4))); my(w); for(i=sqrtint((n-1)\3)+1,sqrtint(n-2), my(t=n-i^2); for(j=sqrtint((t-1)\2)+1,min(sqrtint(t-1),i), if(issquare(t-j^2), w++>1 && return(1)))); 0 \\ Charles R Greathouse IV, Aug 05 2024

Formula

{n: A025427(n) > 1 }. - R. J. Mathar, Aug 05 2022

A154778 Numbers of the form a^2 + 5b^2 with positive integers a,b.

Original entry on oeis.org

6, 9, 14, 21, 24, 29, 30, 36, 41, 45, 46, 49, 54, 56, 61, 69, 70, 81, 84, 86, 89, 94, 96, 101, 105, 109, 116, 120, 126, 129, 134, 141, 144, 145, 149, 150, 161, 164, 166, 174, 180, 181, 184, 189, 196, 201, 205, 206, 214, 216, 224, 225, 229, 230, 241, 244, 245, 246
Offset: 1

Views

Author

M. F. Hasler, Jan 24 2009

Keywords

Comments

Subsequence of A020669 (which allows for a=0 and/or b=0). See there for further references. See A155560 ff for intersection of sequences of type (a^2 + k b^2).
Also, subsequence of A000408 (with 5b^2 = b^2 + (2b)^2).

Examples

			a(1) = 6 = 1^2 + 5*1^2 is the least number that can be written as A+5B where A,B are positive squares.
a(2) = 9 = 2^2 + 5*1^2 is the second smallest number that can be written in this way.
		

Crossrefs

Cf. A033205 (subsequence of primes). [From R. J. Mathar, Jan 26 2009]

Programs

  • Mathematica
    formQ[n_] := Reduce[a > 0 && b > 0 && n == a^2 + 5 b^2, {a, b}, Integers] =!= False; Select[ Range[300], formQ] (* Jean-François Alcover, Sep 20 2011 *)
    Timing[mx = 300; limx = Sqrt[mx]; limy = Sqrt[mx/5]; Select[Union[Flatten[Table[x^2 + 5 y^2, {x, limx}, {y, limy}]]], # <= mx &]] (* T. D. Noe, Sep 20 2011 *)
  • PARI
    isA154778(n,/* use optional 2nd arg to get other analogous sequences */c=5) = { for( b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))}
    for( n=1,300, isA154778(n) & print1(n","))

A004214 Positive numbers that are not the sum of three nonzero squares.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 13, 15, 16, 20, 23, 25, 28, 31, 32, 37, 39, 40, 47, 52, 55, 58, 60, 63, 64, 71, 79, 80, 85, 87, 92, 95, 100, 103, 111, 112, 119, 124, 127, 128, 130, 135, 143, 148, 151, 156, 159, 160, 167, 175, 183, 188, 191, 199, 207, 208, 215, 220, 223, 231
Offset: 1

Views

Author

Keywords

Comments

Not of the form x^2 + y^2 + z^2 with x, y, z >= 1.
Complement of A000408, but skipping the zero. - R. J. Mathar, Nov 23 2006
A025427(a(n)) = 0. - Reinhard Zumkeller, Feb 26 2015

Examples

			The smallest numbers that are the sums of 3 nonzero squares are 3=1+1+1, 6=1+1+4, 9=1+4+4, etc.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a004214 n = a004214_list !! (n-1)
    a004214_list = filter ((== 0) . a025427) [1..]
    -- Reinhard Zumkeller, Feb 26 2015
  • Maple
    gf := sum(sum(sum(q^(x^2+y^2+z^2), x=1..25), y=1..25), z=1..25): s := series(gf, q, 500): for n from 1 to 500 do if coeff(s, q, n)=0 then printf(`%d,`,n) fi:od:
  • Mathematica
    f[n_] := Flatten[Position[Take[Rest[CoefficientList[Sum[x^(i^2), {i, n}]^3, x]], n^2], 0]];f[16] (* Ray Chandler, Dec 06 2006 *)
  • PARI
    isA000408(n)={ local(a,b) ; a=1; while(a^2+1A004214(n)={ return(! isA000408(n)) ; }
    n=1 ; for(an=1,20000, if(isA004214(an), print(n," ",an); n++)) \\ R. J. Mathar, Nov 23 2006
    

Extensions

More terms from James Sellers, Apr 20 2001
Name clarified by Wolfdieter Lang, Apr 04 2013

A085317 Primes which are the sum of three nonzero squares.

Original entry on oeis.org

3, 11, 17, 19, 29, 41, 43, 53, 59, 61, 67, 73, 83, 89, 97, 101, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 233, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 331, 337, 347, 349, 353, 373, 379, 389, 397, 401
Offset: 1

Views

Author

Labos Elemer, Jul 01 2003

Keywords

Comments

This sequence consists of the primes p (not 5, 13, or 37) such that p == 1, 3 or 5 (mod 8). The density of these primes is 0.75. - T. D. Noe, May 21 2004
Primes of the form a^2 + b^2 + c^2 with 1 <= a <= b <= c. - Zak Seidov, Nov 08 2013

Examples

			101 is a term since 101 = 64 + 36 + 1 = 8^2 + 6^2 + 1^2.
		

Crossrefs

Cf. A000408.
Cf. A094712 (primes that are not the sum of three positive squares).
Cf. A094713 (number of ways that prime(n) can be represented as a^2+b^2+c^2 with a >= b >= c > 0).

Programs

  • Mathematica
    lst={}; lim=32; Do[n=a^2+b^2+c^2; If[nHarvey P. Dale, Jun 18 2022 *)

A005914 Number of points on surface of hexagonal prism: 12*n^2 + 2 for n > 0 (coordination sequence for W(2)).

Original entry on oeis.org

1, 14, 50, 110, 194, 302, 434, 590, 770, 974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294, 5810, 6350, 6914, 7502, 8114, 8750, 9410, 10094, 10802, 11534, 12290, 13070, 13874, 14702, 15554, 16430, 17330, 18254, 19202, 20174, 21170
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is equal to the number of functions f:{1,2,3,4}->{1,2,...,n,n+1} such that Im(f) contains 2 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Feb 24 2007
Equals binomial transform of [1, 13, 23, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 22 2008
First bisection of A005918. After 1, all terms are in A000408 (see Formula section). - Bruno Berselli, Feb 07 2012
Also sequence found by reading the segment (1, 14) together with the line from 14, in the direction 14, 50, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Nov 02 2012
Unique sequence such that for all n > 0, n*a(1) + (n-1)*a(2) + (n-3)*a(3) + ... + 2*a(2) + a(1) = n^4. - Warren Breslow, Dec 12 2014

References

  • Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th Ed., 1994, TYPIX search code (229) cI2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences of A005917.

Programs

Formula

G.f.: (1+x)*(1+10*x+x^2)/(1-x)^3. - Simon Plouffe (see MAPLE line)
a(n) = (2n-1)^2 + (2n)^2 + (2n+1)^2 for n > 0. - Bruno Berselli, Jan 30 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=14, a(2)=50, a(3)=110. - Harvey P. Dale, Oct 09 2012
E.g.f.: exp(x)*(12*x^2 + 12*x + 2) - 1. - Alois P. Heinz, Sep 10 2013
From Bruce J. Nicholson, Jan 19 2019: (Start)
Sum_{i=1..n} a(i) = A005917(n+1).
a(n) = A003154(n) + A003154(n+1). (End)
From Amiram Eldar, Jan 27 2022: (Start)
Sum_{n>=0} 1/a(n) = ((Pi/sqrt(6))*coth(Pi/sqrt(6)) + 3)/4.
Sum_{n>=0} (-1)^n/a(n) = ((Pi/sqrt(6))*cosech(Pi/sqrt(6)) + 3)/4. (End)

A010014 a(0) = 1, a(n) = 24*n^2 + 2 for n>0.

Original entry on oeis.org

1, 26, 98, 218, 386, 602, 866, 1178, 1538, 1946, 2402, 2906, 3458, 4058, 4706, 5402, 6146, 6938, 7778, 8666, 9602, 10586, 11618, 12698, 13826, 15002, 16226, 17498, 18818, 20186, 21602, 23066, 24578, 26138, 27746, 29402, 31106, 32858, 34658, 36506, 38402, 40346
Offset: 0

Views

Author

Keywords

Comments

Number of points of L_infinity norm n in the simple cubic lattice Z^3. - N. J. A. Sloane, Apr 15 2008
Numbers of cubes needed to completely "cover" another cube. - Xavier Acloque, Oct 20 2003
First bisection of A005897. After 1, all terms are in A000408. - Bruno Berselli, Feb 06 2012

Crossrefs

Cf. A206399.

Programs

  • Mathematica
    Join[{1}, 24 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
  • PARI
    a(n) = if (n==0, 1, 24*n^2 + 2);
    vector(40, n, a(n-1)) \\ Altug Alkan, Sep 29 2015

Formula

a(n) = (2*n+1)^3 - (2*n-1)^3 for n >= 1. - Xavier Acloque, Oct 20 2003
G.f.: (1+x)*(1+22*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
a(n) = (2*n-1)^2 + (2*n+1)^2 + (4*n)^2 for n>0. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*24+2)*exp(x)-1. - Gopinath A. R., Feb 14 2012
a(n) = A005899(n) + A195322(n), n > 0. - R. J. Cano, Sep 29 2015
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(3)/24*Pi*coth(Pi*sqrt(3)/6) = 1.065052868574... - R. J. Mathar, May 07 2024
a(n) = 2*A158480(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069190(n)+A069190(n+1). - R. J. Mathar, May 07 2024

Extensions

More terms from Xavier Acloque, Oct 20 2003

A000419 Numbers that are the sum of 3 but no fewer nonzero squares.

Original entry on oeis.org

3, 6, 11, 12, 14, 19, 21, 22, 24, 27, 30, 33, 35, 38, 42, 43, 44, 46, 48, 51, 54, 56, 57, 59, 62, 66, 67, 69, 70, 75, 76, 77, 78, 83, 84, 86, 88, 91, 93, 94, 96, 99, 102, 105, 107, 108, 110, 114, 115, 118, 120, 123, 126, 129, 131, 132, 133, 134, 138, 139, 140, 141, 142
Offset: 1

Views

Author

Keywords

Comments

A002828(a(n)) = 3; A025427(a(n)) > 0. - Reinhard Zumkeller, Feb 26 2015

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 311.

Crossrefs

Programs

  • Haskell
    a000419 n = a000419_list !! (n-1)
    a000419_list = filter ((== 3) . a002828) [1..]
    -- Reinhard Zumkeller, Feb 26 2015
    
  • Mathematica
    Select[Range[150],SquaresR[3,#]>0&&SquaresR[2,#]==0&] (* Harvey P. Dale, Nov 01 2011 *)
  • PARI
    is(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return( n/4^valuation(n,4)%8 !=7 ))); 0 \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    def aupto(lim):
      squares = [k*k for k in range(1, int(lim**.5)+2) if k*k <= lim]
      sum2sqs = set(a+b for i, a in enumerate(squares) for b in squares[i:])
      sum3sqs = set(a+b for a in sum2sqs for b in squares)
      return sorted(set(range(lim+1)) & (sum3sqs - sum2sqs - set(squares)))
    print(aupto(142)) # Michael S. Branicky, Mar 06 2021

Formula

Legendre: a nonnegative integer is a sum of three (or fewer) squares iff it is not of the form 4^k m with m == 7 (mod 8).

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A005767 Solutions n to n^2 = a^2 + b^2 + c^2 (a,b,c > 0).

Original entry on oeis.org

3, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85
Offset: 1

Views

Author

N. J. A. Sloane, Ralph Peterson (ralphp(AT)library.nrl.navy.mil)

Keywords

Comments

All numbers not equal to some 2^k or 5*2^k [Fraser and Gordon]. - Joseph Biberstine (jrbibers(AT)indiana.edu), Jul 28 2006

References

  • T. Nagell, Introduction to Number Theory, Wiley, 1951, p. 194.

Crossrefs

Complement of A094958. Cf. A169580, A000378, A000419, A000408.
For primitive solutions see A005818.

Programs

  • Mathematica
    z=100;lst={};Do[a2=a^2;Do[b2=b^2;Do[c2=c^2;e2=a2+b2+c2;e=Sqrt[e2];If[IntegerQ[e]&&e<=z,AppendTo[lst,e]],{c,b,1,-1}],{b,a,1,-1}],{a,1,z}];Union@lst (* Vladimir Joseph Stephan Orlovsky, May 19 2010 *)
  • PARI
    is(n)=if(n%5,n,n/5)==2^valuation(n,2) \\ Charles R Greathouse IV, Mar 12 2013
    
  • Python
    def A005767(n):
        def f(x): return n+x.bit_length()+(x//5).bit_length()
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 14 2025

Formula

a(n) = n + 2*log_2(n) + O(1). - Charles R Greathouse IV, Sep 01 2015
A169580(n) = a(n)^2. - R. J. Mathar, Aug 15 2023

Extensions

More terms from T. D. Noe, Mar 04 2010

A223731 All positive numbers that are primitive sums of three nonzero squares.

Original entry on oeis.org

3, 6, 9, 11, 14, 17, 18, 19, 21, 22, 26, 27, 29, 30, 33, 34, 35, 38, 41, 42, 43, 45, 46, 49, 50, 51, 53, 54, 57, 59, 61, 62, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 86, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 105, 106, 107, 109, 110, 113, 114, 115, 117, 118
Offset: 1

Views

Author

Wolfdieter Lang, Apr 05 2013

Keywords

Comments

These are the ordered numbers for which A223730 is not zero. The multiplicity for the number a(n) is A223730(a(n)).
According to the Halter-Koch reference the present sequence lists the ordered positive integers satisfying i) n not 0, 4, or 7 (mod 8) (see p.10, formula for r_3(n) attributed to A. Schinzel) and ii) n not from the set {1,2,5,10,13,25,37,58,85,130} with possibly one more positive integer member of this set which has to be >= 5*10^10 (if it exists at all). (Korollar 1. (b), p. 13). For this set see also A051952.
The first members with multiplicity 1 (precisely one representation) are 3, 6, 9, 11, 14, 17, 18, 19, 21, 22, 26, 27, 29, 30, 34, 35, 42, 43, 45, 46, 49, 50, 53, 61, 65, 67 ... A223732.
The first members with multiplicity 2 are 33, 38, 41, 51, 54, 57, 59, 62, 69, 74, 77, 81, 83, 90, 94, 98, 99, ... A223733.
The first members with multiplicity 3 are 66, 86, 89, 101, 110, 114, 131, 149, 153, 166, 171, 173, ... A223734.
For the complement see A223735.

Examples

			a(12) = 27 because 27 is the 12th number for which A223730 is nonzero. Because A223730(27) = 1  there is only one primitive sum of three nonzero squares which is 27 denoted by [1,1,5]:
  1^2 + 1^2 + 5^2 = 27.
a(28) = 54 has two primitive representations in question, namely [1,2,7] and [2,5,5]. A223730(54) = 2. The representation [3,3,6] is not primitive because gcd(3,3,6) = 3 not 1.
a(34) = 66 has three representations in question, namely [1,1,8], [1,4,7] and [4,5,5].
		

Crossrefs

Cf. A223730, A000408 (non-primitive case), A223735 (complement).

Programs

  • Mathematica
    threeSquaresQ[n_] := Select[ PowersRepresentations[n, 3, 2], Times @@ #1 != 0 && GCD @@ #1 == 1 & ] != {}; Select[Range[120], threeSquaresQ] (* Jean-François Alcover, Jun 21 2013 *)

Formula

The sequence a(n) is obtained from the ordered set
{m positive integer | m = a^2 + b^2 + c^2 , a,b,c integer, 0 < a <= b <= c, gcd(a,b,c) = 1} with entries appearing only once.
Conjectured g.f.: (x^77 +2*x^76 -2*x^75 +x^74 -x^73 -x^72 +2*x^50 -x^49 +2*x^47 -2*x^46 -x^45 +x^34 +2*x^33 -2*x^32 +x^31 -x^30 -x^29 +2*x^22 -x^21 +2*x^19 -2*x^18 -x^17 +3*x^15 -2*x^14 +x^13 -x^12 -x^10 +2*x^9 +2*x^7 +2*x^6 -3*x^4 -2*x^3 -3*x^2 -3*x -3)*x / (-x^6 +x^5 +x -1). - Alois P. Heinz, Apr 06 2013
Previous Showing 51-60 of 104 results. Next