cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 198 results. Next

A379315 Number of strict integer partitions of n with a unique 1 or prime part.

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 1, 3, 1, 3, 2, 7, 3, 7, 4, 10, 7, 15, 7, 17, 13, 23, 16, 31, 20, 37, 31, 48, 38, 62, 48, 76, 68, 93, 80, 119, 105, 147, 137, 175, 166, 226, 208, 267, 263, 326, 322, 407, 391, 481, 492, 586, 591, 714, 714, 849, 884, 1020, 1050, 1232, 1263
Offset: 0

Views

Author

Gus Wiseman, Dec 28 2024

Keywords

Comments

The "old" primes are listed by A008578.

Examples

			The a(10) = 2 through a(15) = 10 partitions:
  (8,2)  (11)     (9,3)    (13)     (9,5)    (8,7)
  (9,1)  (6,5)    (10,2)   (7,6)    (12,2)   (10,5)
         (7,4)    (6,4,2)  (8,5)    (8,4,2)  (11,4)
         (8,3)             (10,3)   (9,4,1)  (12,3)
         (9,2)             (12,1)            (14,1)
         (10,1)            (6,4,3)           (6,5,4)
         (6,4,1)           (8,4,1)           (8,4,3)
                                             (8,6,1)
                                             (9,4,2)
                                             (10,4,1)
		

Crossrefs

For all prime parts we have A000586, non-strict A000607 (ranks A076610).
For no prime parts we have A096258, non-strict A002095 (ranks A320628).
For a unique composite part we have A379303, non-strict A379302 (ranks A379301).
Considering 1 nonprime gives A379305, non-strict A379304 (ranks A331915).
For squarefree instead of old prime we have A379309, non-strict A379308 (ranks A379316).
Ranked by A379312 /\ A005117 = squarefree positions of 1 in A379311.
The non-strict version is A379314.
A000040 lists the prime numbers, differences A001223.
A000041 counts integer partitions, strict A000009.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A376682 gives k-th differences of old primes.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?(#==1||PrimeQ[#]&)]==1&]],{n,0,30}]
  • PARI
    seq(n)={Vec(sum(k=1, n, if(isprime(k) || k==1, x^k)) * prod(k=4, n, 1 + if(!isprime(k), x^k), 1 + O(x^n)), -n-1)} \\ Andrew Howroyd, Dec 28 2024

A069321 Stirling transform of A001563: a(0) = 1 and a(n) = Sum_{k=1..n} Stirling2(n,k)*k*k! for n >= 1.

Original entry on oeis.org

1, 1, 5, 31, 233, 2071, 21305, 249271, 3270713, 47580151, 760192505, 13234467511, 249383390393, 5057242311031, 109820924003705, 2542685745501751, 62527556173577273, 1627581948113854711, 44708026328035782905, 1292443104462527895991, 39223568601129844839353
Offset: 0

Views

Author

Karol A. Penson, Mar 14 2002

Keywords

Comments

The number of compatible bipartitions of a set of cardinality n for which at least one subset is not underlined. E.g., for n=2 there are 5 such bipartitions: {1 2}, {1}{2}, {2}{1}, {1}{2}, {2}{1}. A005649 is the number of bipartitions of a set of cardinality n. A000670 is the number of bipartitions of a set of cardinality n with none of the subsets underlined. - Kyle Petersen, Mar 31 2005
a(n) is the cardinality of the image set summed over "all surjections". All surjections means: onto functions f:{1, 2, ..., n} -> {1, 2, ..., k} for every k, 1 <= k <= n. a(n) = Sum_{k=1..n} A019538(n, k)*k. - Geoffrey Critzer, Nov 12 2012
From Gus Wiseman, Jan 15 2022: (Start)
For n > 1, also the number of finite sequences of length n + 1 covering an initial interval of positive integers with at least two adjacent equal parts, or non-anti-run patterns, ranked by the intersection of A348612 and A333217. The complement is counted by A005649. For example, the a(3) = 31 patterns, grouped by sum, are:
(1111) (1222) (1122) (1112) (1233) (1223)
(2122) (1221) (1121) (1332) (1322)
(2212) (2112) (1211) (2133) (2213)
(2221) (2211) (2111) (2331) (2231)
(1123) (3312) (3122)
(1132) (3321) (3221)
(2113)
(2311)
(3112)
(3211)
Also the number of ordered set partitions of {1,...,n + 1} with two successive vertices together in some block.
(End)

Crossrefs

The complement is counted by A005649.
A version for permutations of prime indices is A336107.
A version for factorizations is A348616.
Dominated (n > 1) by A350252, complement A345194, compositions A345192.
A000670 = patterns, ranked by A333217.
A001250 = alternating permutations, complement A348615.
A003242 = anti-run compositions, ranked by A333489.
A019536 = necklace patterns.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A261983 = not-anti-run compositions, ranked by A348612.
A333381 = anti-runs of standard compositions.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> `if`(n=0, 2, b(n+1)-b(n))/2:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 02 2018
  • Mathematica
    max = 20; t = Sum[n^(n - 1)x^n/n!, {n, 1, max}]; Range[0, max]!CoefficientList[Series[D[1/(1 - y(Exp[x] - 1)), y] /. y -> 1, {x, 0, max}], x] (* Geoffrey Critzer, Nov 12 2012 *)
    Prepend[Table[Sum[StirlingS2[n, k]*k*k!, {k, n}], {n, 18}], 1] (* Michael De Vlieger, Jan 03 2016 *)
    a[n_] := (PolyLog[-n-1, 1/2] - PolyLog[-n, 1/2])/4; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2016 *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MemberQ[Differences[#],0]&]],{n,0,8}] (* Gus Wiseman, Jan 15 2022 *)
  • PARI
    {a(n)=polcoeff(1+sum(m=1, n, (2*m-1)!/(m-1)!*x^m/prod(k=1, m, 1+(m+k-1)*x+x*O(x^n))), n)} \\ Paul D. Hanna, Oct 28 2013

Formula

Representation as an infinite series: a(0) = 1 and a(n) = Sum_{k>=2} (k^n*(k-1)/(2^k))/4 for n >= 1. This is a Dobinski-type summation formula.
E.g.f.: (exp(x) - 1)/((2 - exp(x))^2).
a(n) = (1/2)*(A000670(n+1) - A000670(n)).
O.g.f.: 1 + Sum_{n >= 1} (2*n-1)!/(n-1)! * x^n / (Product_{k=1..n} (1 + (n + k - 1)*x)). - Paul D. Hanna, Oct 28 2013
a(n) = (A000629(n+1) - A000629(n))/4. - Benoit Cloitre, Oct 20 2002
a(n) = A232472(n-1)/2. - Vincenzo Librandi, Jan 03 2016
a(n) ~ n! * n / (4 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n > 0) = A000607(n + 1) - A005649(n). - Gus Wiseman, Jan 15 2022

A379301 Positive integers whose prime indices include a unique composite number.

Original entry on oeis.org

7, 13, 14, 19, 21, 23, 26, 28, 29, 35, 37, 38, 39, 42, 43, 46, 47, 52, 53, 56, 57, 58, 61, 63, 65, 69, 70, 71, 73, 74, 76, 77, 78, 79, 84, 86, 87, 89, 92, 94, 95, 97, 101, 103, 104, 105, 106, 107, 111, 112, 113, 114, 115, 116, 117, 119, 122, 126, 129, 130, 131
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 70 are {1,3,4}, so 70 is in the sequence.
The prime indices of 98 are {1,4,4}, so 98 is not in the sequence.
		

Crossrefs

For no composite parts we have A302540, counted by A034891 (strict A036497).
For all composite parts we have A320629, counted by A023895 (strict A204389).
For a unique prime part we have A331915, counted by A379304 (strict A379305).
Positions of one in A379300.
Partitions of this type are counted by A379302 (strict A379303).
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A066247 is the characteristic function for the composite numbers.
A377033 gives k-th differences of composite numbers, see A073445, A377034-A377037.
Other counts of prime indices:
- A087436 postpositive, see A038550.
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.
- A379311 old prime, see A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Select[prix[#],CompositeQ]]==1&]

A379304 Number of integer partitions of n with a unique prime part.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 4, 6, 7, 9, 11, 17, 20, 26, 31, 41, 47, 62, 72, 93, 108, 136, 156, 199, 226, 279, 321, 398, 452, 555, 630, 767, 873, 1051, 1188, 1433, 1618, 1930, 2185, 2595, 2921, 3458, 3891, 4580, 5155, 6036, 6776, 7926, 8883, 10324, 11577, 13421, 15014
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Examples

			The a(2) = 1 through a(9) = 9 partitions:
  (2)  (3)   (31)   (5)     (42)     (7)       (62)       (54)
       (21)  (211)  (311)   (51)     (43)      (71)       (63)
                    (2111)  (3111)   (421)     (431)      (621)
                            (21111)  (511)     (4211)     (711)
                                     (31111)   (5111)     (4311)
                                     (211111)  (311111)   (42111)
                                               (2111111)  (51111)
                                                          (3111111)
                                                          (21111111)
		

Crossrefs

For all prime parts we have A000607 (strict A000586), ranks A076610.
For no prime parts we have A002095 (strict A096258), ranks A320628.
Ranked by A331915 = positions of one in A257994.
For a unique composite part we have A379302 (strict A379303), ranks A379301.
The strict case is A379305.
For squarefree instead of prime we have A379308 (strict A379309), ranks A379316.
Considering 1 prime gives A379314 (strict A379315), ranks A379312.
A000040 lists the prime numbers, differences A001223.
A000041 counts integer partitions, strict A000009.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A095195 gives k-th differences of prime numbers.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,_?PrimeQ]==1&]],{n,0,30}]

A379305 Number of strict integer partitions of n with a unique prime part.

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 2, 3, 3, 3, 3, 6, 8, 8, 8, 10, 12, 17, 18, 18, 22, 28, 30, 36, 40, 44, 52, 62, 67, 78, 87, 97, 113, 129, 137, 156, 177, 200, 227, 251, 271, 312, 350, 382, 425, 475, 521, 588, 648, 705, 785, 876, 957, 1061, 1164, 1272, 1411, 1558, 1693, 1866
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Examples

			The a(2) = 1 through a(12) = 8 partitions (A=10, B=11):
  (2)  (3)   (31)  (5)  (42)  (7)    (62)   (54)   (82)   (B)    (93)
       (21)             (51)  (43)   (71)   (63)   (541)  (65)   (A2)
                              (421)  (431)  (621)  (631)  (74)   (B1)
                                                          (83)   (642)
                                                          (92)   (651)
                                                          (821)  (741)
                                                                 (831)
                                                                 (921)
		

Crossrefs

For all prime parts we have A000586, non-strict A000607 (ranks A076610).
For no prime parts we have A096258, non-strict A002095 (ranks A320628).
Ranked by A331915 /\ A005117 = squarefree positions of one in A257994.
For a composite instead of prime we have A379303, non-strict A379302 (ranks A379301).
The non-strict version is A379304.
For squarefree instead of prime we have A379309, non-strict A379308 (ranks A379316).
Considering 1 prime gives A379315, non-strict A379314 (ranks A379312).
A000040 lists the prime numbers, differences A001223.
A000041 counts integer partitions, strict A000009.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A095195 gives k-th differences of prime numbers.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?PrimeQ]==1&]],{n,0,30}]

A379308 Number of integer partitions of n with a unique squarefree part.

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 2, 2, 0, 3, 5, 5, 1, 6, 9, 9, 2, 10, 14, 18, 6, 18, 24, 30, 11, 28, 39, 47, 24, 48, 63, 76, 41, 74, 95, 118, 65, 120, 149, 181, 107, 181, 221, 266, 169, 266, 335, 398, 262, 394, 487, 578, 391, 578, 697, 844, 592, 834, 997, 1198, 867
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2024

Keywords

Examples

			The a(1) = 1 through a(11) = 5 partitions:
  (1)  (2)  (3)  .  (5)    (6)    (7)    .  (5,4)    (10)     (11)
                    (4,1)  (4,2)  (4,3)     (8,1)    (6,4)    (7,4)
                                            (4,4,1)  (8,2)    (8,3)
                                                     (9,1)    (9,2)
                                                     (4,4,2)  (4,4,3)
		

Crossrefs

If all parts are squarefree we have A073576 (strict A087188), ranks A302478.
If no parts are squarefree we have A114374 (strict A256012), ranks A379307.
For composite instead of squarefree we have A379302 (strict A379303), ranks A379301.
For prime instead of squarefree we have A379304, (strict A379305), ranks A331915.
The strict case is A379309.
For old prime instead of squarefree we have A379314, (strict A379315), ranks A379312.
Ranked by A379316, positions of 1 in A379306.
A000041 counts integer partitions, strict A000009.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A377038 gives k-th differences of squarefree numbers.
A379310 counts nonsquarefree prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,_?SquareFreeQ]==1&]],{n,0,30}]

A379309 Number of strict integer partitions of n with a unique squarefree part.

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 4, 4, 1, 4, 7, 7, 2, 6, 8, 11, 4, 9, 13, 17, 7, 13, 20, 22, 13, 20, 29, 33, 21, 29, 40, 47, 27, 41, 56, 64, 42, 59, 77, 85, 60, 74, 104, 115, 83, 101, 141, 155, 113, 138, 179, 206, 156, 183, 236, 272, 212, 239, 309, 343, 282, 315
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Examples

			The a(9) = 2 through a(15) = 7 partitions:
  (5,4)  (10)   (11)   (9,3)  (13)     (14)     (15)
  (8,1)  (6,4)  (7,4)         (8,5)    (8,6)    (8,7)
         (8,2)  (8,3)         (12,1)   (9,5)    (9,6)
         (9,1)  (9,2)         (8,4,1)  (10,4)   (11,4)
                                       (12,2)   (12,3)
                                       (8,4,2)  (8,4,3)
                                       (9,4,1)  (9,4,2)
		

Crossrefs

If all parts are squarefree we have A087188, non-strict A073576 (ranks A302478).
If no parts are squarefree we have A256012, non-strict A114374 (ranks A379307).
For composite instead of squarefree we have A379303, non-strict A379302 (ranks A379301).
For prime instead of squarefree we have A379305, non-strict A379304 (ranks A331915).
The non-strict version is A379308, ranks A379316.
For old prime instead of squarefree we have A379315, non-strict A379314 (ranks A379312).
Ranked by A379316 /\ A005117 = squarefree positions of 1 in A379306.
A000041 counts integer partitions, strict A000009.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A377038 gives k-th differences of squarefree numbers.
A379310 counts nonsquarefree prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?SquareFreeQ]==1&]],{n,0,30}]
  • PARI
    lista(nn) = my(r=1, s=0); for(k=1, nn, if(issquarefree(k), s+=x^k, r*=1+x^k)); concat(0, Vec(r*s+O(x^(1+nn)))); \\ Jinyuan Wang, Feb 21 2025

Extensions

More terms from Jinyuan Wang, Feb 21 2025

A046675 Expansion of Product_{i>0} (1-x^{p_i}), where p_i are the primes.

Original entry on oeis.org

1, 0, -1, -1, 0, 0, 0, 0, 1, 1, 0, -1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, -1, 1, 1, 0, -1, 0, -1, 0, -1, 1, 1, 1, -1, 1, -1, -1, -1, 2, 0, 1, -1, 1, 0, 0, -3, 2, 1, 1, -2, 1, -2, 1, -2, 1, 0, 2, -3, 3, -1, 0, -2, 4, -1, 2, -4, 1, -1, 3, -5, 4, -1, 2, -3, 4, -4, 3, -5, 3, -1, 4, -8, 6, -1, 2, -7, 6, -4, 8, -6, 3
Offset: 0

Views

Author

Keywords

Comments

The difference between the number of even partitions of n into distinct primes and the number of odd partitions of n into distinct primes. - T. D. Noe, Sep 08 2006

References

  • B. C. Berndt and B. M. Wilson, Chapter 5 of Ramanujan's second notebook, pp. 49-78 of Analytic Number Theory (Philadelphia, 1980), Lect. Notes Math. 899, 1981, see Entry 29.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1 - x^Prime[i], {i, 1, 100}], {x, 0, 100}], x] (* Vaclav Kotesovec, Sep 13 2018 *)
    nmax = 100; pmax = PrimePi[nmax]; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; poly[[3]] = -1; Do[p = Prime[k]; Do[poly[[j]] -= poly[[j - p]], {j, nmax + 1, p + 1, -1}];, {k, 2, pmax}]; poly (* Vaclav Kotesovec, Sep 20 2018 *)

Formula

a(n) = A184171(n) - A184172(n). - R. J. Mathar, Jan 10 2011

Extensions

Revised by N. J. A. Sloane, Jun 10 2012

A064364 Positive integers sorted by A001414(n), the sum of their prime divisors, as the major key and n as the minor key.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 7, 10, 12, 15, 16, 18, 14, 20, 24, 27, 21, 25, 30, 32, 36, 11, 28, 40, 45, 48, 54, 35, 42, 50, 60, 64, 72, 81, 13, 22, 56, 63, 75, 80, 90, 96, 108, 33, 49, 70, 84, 100, 120, 128, 135, 144, 162, 26, 44, 105, 112, 125, 126, 150, 160, 180, 192, 216, 243
Offset: 1

Views

Author

Howard A. Landman, Sep 25 2001

Keywords

Comments

This is a permutation of the positive integers.
a(1) could be taken as 0 because 1 is not a member of A001414 and one could start with a(0)=1 (see the W. Lang link).
The row length sequence of this array is A000607(n), n>=2.
If the array is [1,0,2,3,4,5,6,6,...] with offset 0 then the row length sequence is A000607(n), n>=0.
From David James Sycamore, May 11 2018: (Start)
For n > 1, a(n) is the smallest number not yet seen such that sopfr(a(n)) is the least possible integer. The sequence lists in increasing order elements of the finite sets S(k) = {x: sopfr(x)=k}, k >= 0, where sopfr(x) = 0 iff x = 1. When a(n) = A056240(k) for some k >= 2, then sopfr(a(n)) = k and a(n) is the first of A000607(k) terms, all of which have sopfr = k. (A000607(k) is the number of partitions of k into prime parts.) Consequently the sequence follows a sawtooth profile, rising from a(n) = A056240(k) to A000792(k), the greatest number with sopfr = k, then starting over with A056240(k+1) for the next larger value of sopfr. (End) [Edited by M. F. Hasler, Jan 19 2019]

Examples

			The triangle reads:
1,
(0,) (see comment in link to "first 16 rows" by W. Lang)
2,
3,
4,
5,  6,
8,  9,
7,  10, 12,
15, 16, 18,
14, 20, 24, 27,
21, 25, 30, 32, 36,
11, 28, 40, 45, 48, 54,
35, 42, 50, 60, 64, 72, 81,
13, 22, 56, 63, 75, 80, 90, 96, 108,
...
		

Crossrefs

Cf. A001414.
Cf. A000607 (row lengths), A002098 (row sums), A056240 (least = first term in the n-th row), A000792 (greatest term in the n-th row).
Cf. A257815 (inverse).

Programs

  • Haskell
    import Data.List (partition, union)
    a064364 n k = a064364_tabf !! (n-1) !! (k-1)
    a064364_row n = a064364_tabf !! (n-1)
    a064364_tabf = [1] : tail (f 1 [] 1 (map a000792 [2..])) where
       f k pqs v (w:ws) = (map snd pqs') :
         f (k + 1) (union pqs'' (zip (map a001414 us) us )) w ws where
           us = [v + 1 .. w]
           (pqs', pqs'') = partition ((== k) . fst) pqs
    a064364_list = concat a064364_tabf
    -- Reinhard Zumkeller, Jun 11 2015
    
  • Mathematica
    terms = 1000; nmax0 = 100000 (* a rough estimate of max sopfr *);
    sopfr[n_] := sopfr[n] = Total[Times @@@ FactorInteger[n]];
    f[n1_, n2_] := Which[t1 = sopfr[n1]; t2 = sopfr[n2]; t1 < t2, True, t1 == t2, n1 <= n2, True, False];
    Clear[g];
    g[nmax_] := g[nmax] = Sort[Range[nmax], f][[1 ;; terms]];
    g[nmax = nmax0];
    g[nmax += nmax0];
    While[g[nmax] != g[nmax - nmax0], Print[nmax]; nmax += nmax0];
    A064364 = g[nmax] (* Jean-François Alcover, Mar 13 2019 *)
  • PARI
    lista(nn) = {nmax = A000792(nn); v = vector(nmax, k, A001414(k)); for (n=1, nn, vn = select(x->x==n, v, 1); for (k = 1, #vn, print1(vn[k], ", ")))} \\ Michel Marcus, May 01 2018
    
  • PARI
    A064364_vec(N, k=6, L=9)={vector(N, i, if(i<7, N=i, until(A001414(N+=1)==k, ); NA056240(k)-1))} \\ To compute terms up to a given value of k=sopfr(n) and/or for large N >> 1000, it is more efficient to use code similar to lista() above, with "for(k...)" replaced by "a=concat(a, vn)". - M. F. Hasler, Jan 19 2019

Formula

If a(n) = A056240(k) for some k then a(n+A000607(k)-1) = A000792(k). - David James Sycamore, May 11 2018

Extensions

More terms from Vladeta Jovovic, Sep 27 2005

A305614 Expansion of Sum_{p prime} x^p/(1 + x^p).

Original entry on oeis.org

0, 0, 1, 1, -1, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 2, -1, 1, 0, 1, -2, 2, 0, 1, -2, 1, 0, 1, -2, 1, -1, 1, -1, 2, 0, 2, -2, 1, 0, 2, -2, 1, -1, 1, -2, 2, 0, 1, -2, 1, 0, 2, -2, 1, 0, 2, -2, 2, 0, 1, -3, 1, 0, 2, -1, 2, -1, 1, -2, 2, -1, 1, -2, 1, 0, 2, -2, 2, -1
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2018

Keywords

Comments

a(n) is the number of prime divisors p|n such that n/p is odd, minus the number of prime divisors p|n such that n/p is even.

Examples

			The prime divisors of 12 are 2, 3. We see that 12/2 = 6, 12/3 = 4. None of those are odd, but both of them are even, so a(12) = -2.
The prime divisors of 30 are {2,3,5} with quotients {15,10,6}. One of these is odd and two are even, so a(30) = 1 - 2 = -1.
		

Crossrefs

Programs

  • Maple
    a:= n-> -add((-1)^(n/i[1]), i=ifactors(n)[2]):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 07 2018
    # Alternative
    N:= 1000: # to get a(0)..a(N)
    V:= Vector(N):
    p:= 1:
    do
      p:= nextprime(p);
      if p > N then break fi;
      R:= [seq(i,i=p..N,p)];
      W:= ;
      V[R]:= V[R]+W;
    od:
    [0,seq(V[i],i=1..N)]; # Robert Israel, Jun 07 2018
  • Mathematica
    Table[Sum[If[PrimeQ[d], (-1)^(n/d - 1), 0], {d, Divisors[n]}], {n, 30}]

Formula

a(n) = -Sum_{p|n prime} (-1)^(n/p).
From Robert Israel, Jun 07 2018: (Start)
If n is odd, a(n) = A001221(n).
If n == 2 (mod 4), a(n) = 2 - A001221(n).
If n == 0 (mod 4) and n > 0, a(n) = -A001221(n). (End)
L.g.f.: log(Product_{k>=1} (1 + x^prime(k))^(1/prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
Previous Showing 21-30 of 198 results. Next