A005460
a(n) = (3*n+4)*(n+3)!/24.
Original entry on oeis.org
1, 7, 50, 390, 3360, 31920, 332640, 3780000, 46569600, 618710400, 8821612800, 134399865600, 2179457280000, 37486665216000, 681734237184000, 13071512982528000, 263564384219136000, 5575400435404800000, 123469776914964480000, 2856835183101419520000
Offset: 0
- R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
- R. K. Guy, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- R. Austin, R. K. Guy, and R. Nowakowski, Unpublished notes, 1987
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- John K. Sikora, On Calculating the Coefficients of a Polynomial Generated Sequence Using the Worpitzky Number Triangles, arXiv:1806.00887 [math.NT], 2018.
-
[(3*n+4)*Factorial(n+3)/24: n in [0..20]]; // Vincenzo Librandi, Oct 08 2011
-
Table[StirlingS2[n+3, n+1]*n!, {n,0,20}]
-
a(n)=(3*n+4)*(n+3)!/24 \\ Charles R Greathouse IV, Jun 30 2017
-
[factorial(n)*stirling_number2(n+3,n+1) for n in range(21)] # G. C. Greubel, Nov 22 2022
A124212
Expansion of e.g.f. exp(x)/sqrt(2-exp(2*x)).
Original entry on oeis.org
1, 2, 8, 56, 560, 7232, 114368, 2139776, 46223360, 1132124672, 30999600128, 938366468096, 31114518056960, 1121542540992512, 43664751042265088, 1826043989622358016, 81635676596544143360
Offset: 0
-
N:= 60; # to get a(n) for n <= N
S:= series(exp(x)/sqrt(2-exp(2*x)), x, N+1):
seq(coeff(S,x,j), j=0..N); # Robert Israel, May 19 2014
-
CoefficientList[Series[E^x/Sqrt[2-E^(2*x)]-1, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 03 2013 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=1+intformal(A+A^3)); n!*polcoeff(A,n)} \\ Paul D. Hanna, Oct 04 2008
A062208
a(n) = Sum_{m>=0} binomial(m,3)^n*2^(-m-1).
Original entry on oeis.org
1, 1, 63, 16081, 10681263, 14638956721, 35941784497263, 143743469278461361, 874531783382503604463, 7687300579969605991710001, 93777824804632275267836362863, 1537173608464960118370398000894641, 32970915649974341628739088902163732463
Offset: 0
See
A062204 for further references, formulas and comments.
-
A000629 := proc(n) local k ; sum( k^n/2^k,k=0..infinity) ; end: A062208 := proc(n) local a,stir,ni,n1,n2,n3,stir2,i,j,tmp ; a := 0 ; if n = 0 then RETURN(1) ; fi ; stir := combinat[partition](n) ; stir2 := {} ; for i in stir do if nops(i) <= 3 then tmp := i ; while nops(tmp) < 3 do tmp := [op(tmp),0] ; od: tmp := combinat[permute](tmp) ; for j in tmp do stir2 := stir2 union { j } ; od: fi ; od: for ni in stir2 do n1 := op(1,ni) ; n2 := op(2,ni) ; n3 := op(3,ni) ; a := a+combinat[multinomial](n,n1,n2,n3)*(A000629(3*n1+2*n2+n3)-1/2-2^(3*n1+2*n2+n3)/4)*(-3)^n2*2^n3 ; od: a/(2*6^n) ; end: seq(A062208(n),n=0..14) ; # R. J. Mathar, Apr 01 2008
a:=proc(n) options operator, arrow: sum(binomial(m, 3)^n*2^(-m-1),m=0.. infinity) end proc: seq(a(n),n=0..12); # Emeric Deutsch, Mar 22 2008
-
a[n_] = Sum[2^(-1-m)*((m-2)*(m-1)*m)^n, {m, 0, Infinity}]/6^n; a /@ Range[0, 12] (* Jean-François Alcover, Jul 13 2011 *)
With[{r = 3}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)
A123227
Expansion of e.g.f.: 2*exp(2*x) / (3 - exp(2*x)).
Original entry on oeis.org
1, 3, 12, 66, 480, 4368, 47712, 608016, 8855040, 145083648, 2641216512, 52891055616, 1155444326400, 27344999497728, 696933753434112, 19031293222127616, 554336947975618560, 17155693983744196608, 562168282464340672512, 19444889661250162262016
Offset: 0
-
a := n -> 2^(n+1)*polylog(-n, 1/3):
seq(round(evalf(a(n),32)), n=0..19); # Peter Luschny, Nov 03 2015
seq(expand(2^(n+1)*polylog(-n,1/3)), n=0..100); # Robert Israel, Nov 03 2015
-
CoefficientList[Series[2*Exp[2*x]/(3-Exp[2*x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 24 2013 *)
Round@Table[(-1)^(n+1) (LerchPhi[Sqrt[3], -n, 0] + LerchPhi[-Sqrt[3], -n, 0]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
-
{a(n)=n!*polcoeff(2*exp(2*x+x*O(x^n))/(3 - exp(2*x+x*O(x^n))), n)} /* Paul D. Hanna */
-
{a(n)=polcoeff(sum(m=0, n, 3^m*m!*x^m/prod(k=1, m, 1+2*k*x+x*O(x^n))), n)} /* Paul D. Hanna */
-
{Stirling2(n, k)=if(k<0||k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
{a(n)=sum(k=0, n, (-2)^(n-k)*3^k*Stirling2(n, k)*k!)} /* Paul D. Hanna */
-
my(x='x+O('x^20)); Vec(serlaplace(2*exp(2*x)/(3-exp(2*x)))) \\ Joerg Arndt, May 06 2013
-
@CachedFunction
def BB(n, k, x): # Modified Cardinal B-splines
if n == 1: return 0 if (x < 0) or (x >= k) else 1
return x*BB(n-1, k, x) + (n*k-x)*BB(n-1, k, x-k)
def EulerianPolynomial(n, k, x):
if n == 0: return 1
return add(BB(n+1, k, k*m+1)*x^m for m in (0..n))
def A123227(n) : return 3^n*EulerianPolynomial(n, 1, 1/3)
[A123227(n) for n in (0..18)] # Peter Luschny, May 04 2013
A278075
Coefficients of the signed Fubini polynomials in ascending order, F_n(x) = Sum_{k=0..n} (-1)^n*Stirling2(n,k)*k!*(-x)^k.
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 1, -6, 6, 0, -1, 14, -36, 24, 0, 1, -30, 150, -240, 120, 0, -1, 62, -540, 1560, -1800, 720, 0, 1, -126, 1806, -8400, 16800, -15120, 5040, 0, -1, 254, -5796, 40824, -126000, 191520, -141120, 40320, 0, 1, -510, 18150, -186480, 834120, -1905120, 2328480, -1451520, 362880
Offset: 0
Triangle of coefficients starts:
[1]
[0, 1]
[0, -1, 2]
[0, 1, -6, 6]
[0, -1, 14, -36, 24]
[0, 1, -30, 150, -240, 120]
[0, -1, 62, -540, 1560, -1800, 720]
[0, 1, -126, 1806, -8400, 16800, -15120, 5040]
- Peter Luschny, Illustration of the polynomials.
- Peter Luschny, The Bernoulli Manifesto.
- Grzegorz Rządkowski, Bernoulli numbers and solitons - revisited, Journal of Nonlinear Mathematical Physics, (2010) 17:1, 121-126.
- J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik, 94 (1883), 203-232.
Let F(n, x) = Sum_{k=0..n} T(n,k)*x^k then, apart from possible differences in the sign or the offset, we have: F(n, -5) =
A094418(n), F(n, -4) =
A094417(n), F(n, -3) =
A032033(n), F(n, -2) =
A004123(n), F(n, -1) =
A000670(n), F(n, 0) =
A000007(n), F(n, 1) =
A000012(n), F(n, 2) =
A000629(n), F(n, 3) =
A201339(n), F(n, 4) =
A201354(n), F(n, 5) =
A201365(n).
-
function T(n, k)
if k < 0 || k > n return 0 end
if n == 0 && k == 0 return 1 end
k*(T(n-1, k-1) - T(n-1, k))
end
for n in 0:7
println([T(n,k) for k in 0:n])
end
# Peter Luschny, Mar 26 2020
-
F := (n,x) -> add((-1)^n*Stirling2(n,k)*k!*(-x)^k, k=0..n):
for n from 0 to 10 do PolynomialTools:-CoefficientList(F(n,x), x) od;
-
T[ n_, k_] := If[ n < 0 || k < 0, 0, (-1)^(n - k) k! StirlingS2[n, k]]; (* Michael Somos, Jul 08 2018 *)
-
{T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(n + i) * binomial(k, i) * i^n))};
/* Michael Somos, Jul 08 2018 */
A330353
Expansion of e.g.f. Sum_{k>=1} (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)).
Original entry on oeis.org
1, 4, 18, 112, 810, 7144, 73458, 850672, 11069370, 161190904, 2575237698, 44571447232, 836188737930, 16970931765064, 368985732635538, 8524290269083792, 208874053200038490, 5428866923032585624, 149250273758730282978, 4318265042184721248352
Offset: 1
Cf.
A000041,
A000203,
A000629,
A002745,
A008277,
A038048,
A167137,
A308555,
A330351,
A330352,
A330354.
-
nmax = 20; CoefficientList[Series[Sum[(Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
A005462
Number of simplices in barycentric subdivision of n-simplex.
Original entry on oeis.org
1, 31, 602, 10206, 166824, 2739240, 46070640, 801496080, 14495120640, 273158645760, 5368729766400, 110055327782400, 2351983118284800, 52361635508582400, 1213240925049753600, 29227769646147072000, 731310069474496512000, 18984684514588176384000
Offset: 3
- R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
- R. K. Guy, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Micah Manary, Table of n, a(n) for n = 3..138
- R. Austin, R. K. Guy, and R. Nowakowski, Unpublished notes, 1987
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
-
[Factorial(n-3)*StirlingSecond(n+2,n-2): n in [3..30]]; // G. C. Greubel, Nov 22 2022
-
Table[(n-3)!*StirlingS2[n+2,n-2], {n,3,30}] (* G. C. Greubel, Nov 22 2022 *)
-
[factorial(n-3)*stirling_number2(n+2,n-2) for n in range(3,31)] # G. C. Greubel, Nov 22 2022
A052862
Expansion of e.g.f. log(-1/(-2+exp(x)))*x.
Original entry on oeis.org
0, 0, 2, 6, 24, 130, 900, 7574, 74928, 851274, 10916700, 155919742, 2453941512, 42188446898, 786563892660, 15805750451430, 340522975054176, 7829628493247002, 191363568551328780, 4954089147107164238
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Cycle(C),C=Set(Z,1 <= card),S=Prod(Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*((i+r)^(n-r)/(i!*(k-i-r)!)), {i, 0, k-r}], {k, r, n}];
Fubini[0, 1] = 1;
a[n_] := If[n == 2, 2, 2 n * Fubini[n-2, 1]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 11 2022 *)
-
my(x='x+O('x^25)); concat([0,0],Vec(serlaplace(log(-1/(-2+exp(x)))*x))) \\ Joerg Arndt, Oct 11 2022
A079641
Matrix product of Stirling2-triangle A008277(n,k) and unsigned Stirling1-triangle |A008275(n,k)|.
Original entry on oeis.org
1, 2, 1, 6, 6, 1, 26, 36, 12, 1, 150, 250, 120, 20, 1, 1082, 2040, 1230, 300, 30, 1, 9366, 19334, 13650, 4270, 630, 42, 1, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1, 14174522
Offset: 1
Triangle begins:
1;
2,1;
6,6,1;
26,36,12,1;
150,250,120,20,1;
1082,2040,1230,300,30,1;
...
Triangle (0,2,1,4,2,6,3,8,4,...) DELTA (1,0,1,0,1,0,1,0,1,...) begins:
1
0, 1
0, 2, 1
0, 6, 6, 1
0, 26, 36, 12, 1
0, 150, 250, 120, 20, 1
0, 1082, 2040, 1230, 300, 30, 1. - _Philippe Deléham_, Dec 22 2011
- Nick Early, Canonical Bases for Permutohedral Plates, arXiv:1712.08520 [math.CO], 2017.
- Nick Early, Honeycomb tessellations and canonical bases for permutohedral blades, arXiv:1810.03246 [math.CO], 2018.
- D. E. Knuth, Convolution polynomials, arXiv:math/9207221 [math.CA], 1992; The Mathematica J., 2 (1992), 67-78.
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> add((-1)^(n-k)*2^k*k!*combinat:-stirling2(n, k), k=0..n), 9); # Peter Luschny, Jan 26 2016
-
rows = 10;
t = Table[Sum[(-1)^(n-k)*2^k*k!*StirlingS2[n, k], {k,0,n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
A302922
Raw moments of a Fibonacci-geometric probability distribution.
Original entry on oeis.org
1, 6, 58, 822, 15514, 366006, 10361818, 342239862, 12918651034, 548600581686, 25885279045978, 1343513774912502, 76071145660848154, 4666162902628259766, 308236822886732856538, 21815861409181135034742, 1646982315540717414270874, 132109620398598537723816246
Offset: 0
a(0)=1 is the 0th raw moment of the distribution, which is the total probability.
a(1)=6 is the 1st raw moment, known as the mean of the distribution. It is the arithmetic average of integers following the distribution.
a(2)=58 is the 2nd raw moment. It is the arithmetic average of the squares of integers following the distribution.
-
Module[{max, r, g},
max = 17;
r = Range[0, max];
g[x_] := x^2/(4 - 2 x - x^2);
r! CoefficientList[Normal[Series[g[Exp[x]], {x, 0, max}]], x]
]
-
Vec(serlaplace(exp(2*x)/(4-2*exp(x)-exp(2*x)))) \\ Michel Marcus, Apr 17 2018
Comments