cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 143 results. Next

A060356 Expansion of e.g.f.: -LambertW(-x/(1+x)).

Original entry on oeis.org

0, 1, 0, 3, 4, 65, 306, 4207, 38424, 573057, 7753510, 134046671, 2353898196, 47602871329, 1013794852266, 23751106404495, 590663769125296, 15806094859299329, 448284980183376078, 13515502344669830287
Offset: 0

Views

Author

Vladeta Jovovic, Apr 01 2001

Keywords

Comments

Also the number of labeled lone-child-avoiding rooted trees with n nodes. A rooted tree is lone-child-avoiding if it has no unary branchings, meaning every non-leaf node covers at least two other nodes. The unlabeled version is A001678(n + 1). - Gus Wiseman, Jan 20 2020

Examples

			From _Gus Wiseman_, Dec 31 2019: (Start)
Non-isomorphic representatives of the a(7) = 4207 trees, written as root[branches], are:
  1[2,3[4,5[6,7]]]
  1[2,3[4,5,6,7]]
  1[2[3,4],5[6,7]]
  1[2,3,4[5,6,7]]
  1[2,3,4,5[6,7]]
  1[2,3,4,5,6,7]
(End)
		

Crossrefs

Cf. A008297.
Column k=0 of A231602.
The unlabeled version is A001678(n + 1).
The case where the root is fixed is A108919.
Unlabeled rooted trees are counted by A000081.
Lone-child-avoiding rooted trees with labeled leaves are A000311.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Singleton-reduced rooted trees are counted by A330951.

Programs

  • GAP
    List([0..20],n->Sum([1..n],k->(-1)^(n-k)*Factorial(n)/Factorial(k) *Binomial(n-1,k-1)*k^(k-1))); # Muniru A Asiru, Feb 19 2018
  • Maple
    seq(coeff(series( -LambertW(-x/(1+x)), x, n+1), x, n)*n!, n = 0..20); # G. C. Greubel, Mar 16 2020
  • Mathematica
    CoefficientList[Series[-LambertW[-x/(1+x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    a[n_]:=If[n==1,1,n*Sum[Times@@a/@Length/@stn,{stn,Select[sps[Range[n-1]],Length[#]>1&]}]];
    Array[a,10] (* Gus Wiseman, Dec 31 2019 *)
  • PARI
    { for (n=0, 100, f=n!; a=sum(k=1, n, (-1)^(n - k)*f/k!*binomial(n - 1, k - 1)*k^(k - 1)); write("b060356.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 04 2009
    
  • PARI
    my(x='x+O('x^20)); concat([0], Vec(serlaplace(-lambertw(-x/(1+x))))) \\ G. C. Greubel, Feb 19 2018
    

Formula

a(n) = Sum_{k=1..n} (-1)^(n-k)*n!/k!*binomial(n-1, k-1)*k^(k-1). a(n) = Sum_{k=0..n} Stirling1(n, k)*A058863(k). - Vladeta Jovovic, Sep 17 2003
a(n) ~ n^(n-1) * (1-exp(-1))^(n+1/2). - Vaclav Kotesovec, Nov 27 2012
a(n) = n * A108919(n). - Gus Wiseman, Dec 31 2019

A316651 Number of series-reduced rooted trees with n leaves spanning an initial interval of positive integers.

Original entry on oeis.org

1, 2, 12, 112, 1444, 24086, 492284, 11910790, 332827136, 10546558146, 373661603588, 14636326974270, 628032444609396, 29296137817622902, 1476092246351259964, 79889766016415899270, 4622371378514020301740, 284719443038735430679268, 18601385258191195218790756
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(3) = 12 trees:
  (1(11)), (111),
  (1(12)), (2(11)), (112),
  (1(22)), (2(12)), (122),
  (1(23)), (2(13)), (3(12)), (123).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    a:= n-> add(add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1), k=1..n):
    seq(a(n), n=1..20);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
         Sum[Binomial[A[i, k] + j - 1, j] b[n - i*j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]];
    a[n_] := Sum[Sum[A[n, k-j]*(-1)^j*Binomial[k, j], {j, 0, k-1}], {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
  • PARI
    \\ here R(n,k) is A000669, A050381, A220823, ...
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v,[0]))[n])); v}
    seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018

Formula

From Vaclav Kotesovec, Sep 18 2019: (Start)
a(n) ~ c * d^n * n^(n-1), where d = 1.37392076830840090205551979... and c = 0.41435722857311602982846...
a(n) ~ 2*log(2)*A326396(n)/n. (End)

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 14 2018

A006024 Number of labeled mating graphs with n nodes. Also called point-determining graphs.

Original entry on oeis.org

1, 1, 1, 4, 32, 588, 21476, 1551368, 218608712, 60071657408, 32307552561088, 34179798520396032, 71474651351939175424, 296572048493274368856832, 2448649084251501449508762880, 40306353989748719650902623919616
Offset: 0

Views

Author

Keywords

Comments

A mating graph is one in which no two vertices have identical adjacencies with the other vertices. - Ronald C. Read and Vladeta Jovovic, Feb 10 2003
Also number of (n-1)-node labeled mating graphs allowing loops and without isolated nodes. - Vladeta Jovovic, Mar 08 2008

Examples

			Consider the square (cycle of length 4) on vertices 1, 2, 3 and 4 in that order. Join a fifth vertex (5) to vertices 1, 3 and 4. The resulting graph is not a mating graph since vertices 1 and 3 both have the set {2, 4, 5} as neighbors. If we delete the edge (1,5) then the resulting graph is a mating graph: the neighborhood sets for vertices 1, 2, 3, 4 and 5 are respectively {2,4}, {1,3}, {2,4,5}, {1,3,5} and {3,4} - all different.
		

References

  • R. C. Read, The Enumeration of Mating-Type Graphs. Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006025.
Cf. bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.
Cf. A007833, A079306 (connected)

Programs

  • Mathematica
    a[n_] := Sum[StirlingS1[n, k] 2^Binomial[k, 2], {k, 0, n}];
    Array[a, 15] (* Jean-François Alcover, Jul 25 2018 *)
  • PARI
    a(n)=n!*polcoeff(sum(k=0,n,2^(k*(k-1)/2)*log(1+x+x*O(x^n))^k/k!),n) \\ Paul D. Hanna, May 20 2009

Formula

a(n) = Sum_{k=0..n} Stirling1(n, k)*2^binomial(k, 2). - Ronald C. Read and Vladeta Jovovic, Feb 10 2003
E.g.f.: Sum_{n>=0} 2^(n(n-1)/2)*log(1+x)^n/n!. - Paul D. Hanna, May 20 2009

Extensions

More terms from Ronald C. Read and Vladeta Jovovic, Feb 10 2003
a(0)=1 prepended by Andrew Howroyd, Sep 09 2018

A006351 Number of series-parallel networks with n labeled edges. Also called yoke-chains by Cayley and MacMahon.

Original entry on oeis.org

1, 2, 8, 52, 472, 5504, 78416, 1320064, 25637824, 564275648, 13879795712, 377332365568, 11234698041088, 363581406419456, 12707452084972544, 477027941930515456, 19142041172838025216, 817675811320888020992, 37044610820729973813248, 1774189422608238694776832
Offset: 1

Views

Author

Keywords

Comments

For a simple relationship to series-reduced rooted trees, partitions of n, and phylogenetic trees among other combinatoric constructs, see comments in A000311. - Tom Copeland, Jan 06 2021

Examples

			D^3(1) = (12*x^2+56*x+52)/(x-1)^6. Evaluated at x = 0 this gives a(4) = 52.
a(3) = 8: The 8 possible increasing plane trees on 3 vertices with vertices of outdegree k >= 1 coming in 2 colors, B or W, are
.......................................................
.1B..1B..1W..1W.....1B.......1W........1B........1W....
.|...|...|...|...../.\....../..\....../..\....../..\...
.2B..2W..2B..2W...2...3....2....3....3....2....3....2..
.|...|...|...|.........................................
.3...3...3...3.........................................
G.f. = x + 2*x^2 + 8*x^3 + 52*x^4 + 472*x^5 + 5504*x^6 + 78416*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 417.
  • P. A. MacMahon, Yoke-trains and multipartite compositions in connexion with the analytical forms called "trees", Proc. London Math. Soc. 22 (1891), 330-346; reprinted in Coll. Papers I, pp. 600-616. Page 333 gives A000084 = 2*A000669.
  • P. A. MacMahon, The combination of resistances, The Electrician, 28 (1892), 601-602; reprinted in Coll. Papers I, pp. 617-619.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.40(a), S(x).

Crossrefs

Cf. A000311, A000084 (for unlabeled case), A032188. A140945.

Programs

  • Maple
    read transforms; t1 := 2*ln(1+x)-x; t2 := series(t1,x,10); t3 := seriestoseries(t2,'revogf'); t4 := SERIESTOLISTMULT(%);
    # N denotes all series-parallel networks, S = series networks, P = parallel networks;
    spec := [ N, N=Union(Z,S,P),S=Set(Union(Z,P),card>=2), P=Set(Union(Z,S), card>=2)}, labeled ]: A006351 := n->combstruct[count](spec,size=n);
    A006351 := n -> add(combinat[eulerian2](n-1,k)*2^(n-k-1),k=0..n-1):
    seq(A006351(n), n=1..18); # Peter Luschny, Nov 16 2012
  • Mathematica
    max = 18; f[x_] := 2*Log[1+x]-x; Rest[ CoefficientList[ InverseSeries[ Series[ f[x], {x, 0, max}], x], x]]*Range[max]! (* Jean-François Alcover, Nov 25 2011 *)
  • Maxima
    a(n):=if n=1 then 1 else ((n-1)!*sum(binomial(n+k-1,n-1)* sum((-1)^(j)*binomial(k,j)*sum((binomial(j,l)*(j-l)!*2^(j-l)*(-1)^l* stirling1(n-l+j-1,j-l))/(n-l+j-1)!,l,0,j),j,1,k),k,1,n-1)); /* Vladimir Kruchinin, Jan 24 2012 */
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(serreverse( 2*log(1+x) - 1*x ))) \\ Joerg Arndt, May 01 2013
  • Sage
    # uses[eulerian2 from A201637]
    def A006351(n): return add(A201637(n-1, k)*2^(n-k-1) for k in (0..n-1))
    [A006351(n) for n in (1..18)]  # Peter Luschny, Nov 16 2012
    

Formula

For n >= 2, A006351(n) = 2*A000311(n) = A005640(n)/2^n. Row sums of A140945.
E.g.f. is reversion of 2*log(1+x)-x.
Also exponential transform of A000311, define b by 1+sum b_n x^n / n! = exp ( 1 + sum a_n x^n /n!).
E.g.f.: A(x), B(x)=x*A(x) satisfies the differential equation B'(x)=(1+B(x))/(1-B(x)). - Vladimir Kruchinin, Jan 18 2011
From Peter Bala, Sep 05 2011: (Start)
The generating function A(x) satisfies the autonomous differential equation A'(x) = (1+A)/(1-A) with A(0) = 0. Hence the inverse function A^-1(x) = int {t = 0..x} (1-t)/(1+t) = 2*log(1+x)-x, which yields A(x) = -1-2*W(-1/2*exp((x-1)/2)), where W is the Lambert W function.
The expansion of A(x) can be found by inverting the above integral using the method of [Dominici, Theorem 4.1] to arrive at the result a(n) = D^(n-1)(1) evaluated at x = 0, where D denotes the operator g(x) -> d/dx((1+x)/(1-x)*g(x)). Compare with A032188.
Applying [Bergeron et al., Theorem 1] to the result x = int {t = 0..A(x)} 1/phi(t), where phi(t) = (1+t)/(1-t) = 1 + 2*t + 2*t^2 + 2*t^3 + ..., leads to the following combinatorial interpretation for the sequence: a(n) gives the number of plane increasing trees on n vertices where each vertex of outdegree k >=1 can be in one of 2 colors. An example is given below. (End)
A134991 gives (b.+c.)^n = 0^n , for (b_n)=A000311(n+1) and (c_0)=1, (c_1)=-1, and (c_n)=-2* A000311(n) = -A006351(n) otherwise. E.g., umbrally, (b.+c.)^2 = b_2*c_0 + 2 b_1*c_1 + b_0*c_2 =0. - Tom Copeland, Oct 19 2011
G.f.: 1/S(0) where S(k) = 1 - x*(k+1) - x*(k+1)/S(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 18 2011
a(n) = ((n-1)!*sum(k=1..n-1, C(n+k-1,n-1)*sum(j=1..k, (-1)^(j)*C(k,j)* sum(l=0..j, (C(j,l)*(j-l)!*2^(j-l)*(-1)^l*stirling1(n-l+j-1,j-l))/ (n-l+j-1)!)))), n>1, a(1)=1. - Vladimir Kruchinin, Jan 24 2012
E.g.f.: A(x) = exp(B(x))-1 where B(x) is the e.g.f. of A000311. - Vladimir Kruchinin, Sep 25 2012
a(n) = sum_{k=0..n-1} A201637(n-1,k)*2^(n-k-1). - Peter Luschny, Nov 16 2012
G.f.: -1 + 2/Q(0), where Q(k)= 1 - k*x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) ~ sqrt(2)*n^(n-1)/((2*log(2)-1)^(n-1/2)*exp(n)). - Vaclav Kotesovec, Jul 17 2013
G.f.: Q(0)/(1-x), where Q(k) = 1 - x*(k+1)/( x*(k+1) - (1 -x*(k+1))*(1 -x*(k+2))/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 10 2013
a(1) = 1; a(n) = a(n-1) + Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Aug 28 2020
Conjecture: a(n) = A379459(n-2,0) = A379460(n-1,0) for n > 1 with a(1) = 1. - Mikhail Kurkov, Jan 16 2025

A316652 Number of series-reduced rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

Original entry on oeis.org

1, 2, 9, 69, 623, 7793, 110430, 1906317, 36833614, 816101825, 19925210834, 541363267613, 15997458049946, 515769374925576, 17905023985615254, 669030297769291562, 26689471638523499483, 1134895275721374771655, 51161002326406795249910, 2440166138715867838359915
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(3) = 9 trees:
(1(11)), (111),
(1(12)), (2(11)), (112),
(1(23)), (2(13)), (3(12)), (123).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,4}]
  • PARI
    \\ See A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)}
    StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Jan 04 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 04 2021

A320160 Number of series-reduced balanced rooted trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 2, 3, 6, 9, 19, 31, 63, 110, 215, 391, 773, 1451, 2879, 5594, 11173, 22041, 44136, 87631, 175155, 348186, 694013, 1378911, 2743955, 5452833, 10853541, 21610732, 43122952, 86192274, 172753293, 347114772, 699602332, 1414033078, 2866580670, 5826842877, 11874508385
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.
Also the number of balanced unlabeled phylogenetic rooted trees with n leaves.

Examples

			The a(1) = 1 through a(6) = 19 rooted trees:
  1  2     3      4           5            6
     (11)  (12)   (13)        (14)         (15)
           (111)  (22)        (23)         (24)
                  (112)       (113)        (33)
                  (1111)      (122)        (114)
                  ((11)(11))  (1112)       (123)
                              (11111)      (222)
                              ((11)(12))   (1113)
                              ((11)(111))  (1122)
                                           (11112)
                                           (111111)
                                           ((11)(13))
                                           ((11)(22))
                                           ((12)(12))
                                           ((11)(112))
                                           ((12)(111))
                                           ((11)(1111))
                                           ((111)(111))
                                           ((11)(11)(11))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    phy2[labs_]:=If[Length[labs]==1,labs,Union@@Table[Sort/@Tuples[phy2/@ptn],{ptn,Select[mps[Sort[labs]],Length[#1]>1&]}]];
    Table[Sum[Length[Select[phy2[ptn],SameQ@@Length/@Position[#,_Integer]&]],{ptn,IntegerPartitions[n]}],{n,8}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(u=vector(n, n, 1), v=vector(n)); while(u, v+=u; u=EulerT(u)-u); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(14) and beyond from Andrew Howroyd, Oct 25 2018

A050381 Number of series-reduced planted trees with n leaves of 2 colors.

Original entry on oeis.org

2, 3, 10, 40, 170, 785, 3770, 18805, 96180, 502381, 2667034, 14351775, 78096654, 429025553, 2376075922, 13252492311, 74372374366, 419651663108, 2379399524742, 13549601275893, 77460249369658, 444389519874841
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

Consider the free algebraic system with two commutative associative operators (x+y) and (x*y) and two generators A,B. The number of elements with n occurrences of the generators is 2*a(n) if n>1, and the number of generators if n=1. - Michael Somos, Aug 07 2017
From Gus Wiseman, Feb 07 2020: (Start)
Also the number of semi-lone-child-avoiding rooted trees with n leaves. Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf. For example, the a(1) = 2 through a(3) = 10 trees are:
o (oo) (ooo)
(o) (o(o)) (o(oo))
((o)(o)) (oo(o))
((o)(oo))
(o(o)(o))
(o(o(o)))
((o)(o)(o))
((o)(o(o)))
(o((o)(o)))
((o)((o)(o)))
(End)

Examples

			For n=2, the 2*a(2) = 6 elements are: A+A, A+B, B+B, A*A, A*B, B*B. - _Michael Somos_, Aug 07 2017
		

Crossrefs

Column 2 of A319254.
Lone-child-avoiding rooted trees with n leaves are A000669.
Lone-child-avoiding rooted trees with n vertices are A001678.
The locally disjoint case is A331874.
Semi-lone-child-avoiding rooted trees with n vertices are A331934.
Matula-Goebel numbers of these trees are A331935.

Programs

  • Mathematica
    terms = 22;
    B[x_] = x O[x]^(terms+1);
    A[x_] = 1/(1 - x + B[x])^2;
    Do[A[x_] = A[x]/(1 - x^k + B[x])^Coefficient[A[x], x, k] + O[x]^(terms+1) // Normal, {k, 2, terms+1}];
    Join[{2}, Drop[CoefficientList[A[x], x]/2, 2]] (* Jean-François Alcover, Aug 17 2018, after Michael Somos *)
    slaurte[n_]:=If[n==1,{o,{o}},Join@@Table[Union[Sort/@Tuples[slaurte/@ptn]],{ptn,Rest[IntegerPartitions[n]]}]];
    Table[Length[slaurte[n]],{n,10}] (* Gus Wiseman, Feb 07 2020 *)
  • PARI
    {a(n) = my(A, B); if( n<2, 2*(n>0), B = x * O(x^n); A = 1 / (1 - x + B)^2; for(k=2, n, A /= (1 - x^k + B)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Aug 07 2017 */

Formula

Doubles (index 2+) under EULER transform.
Product_{k>=1} (1-x^k)^-a(k) = 1 + a(1)*x + Sum_{k>=2} 2*a(k)*x^k. - Michael Somos, Aug 07 2017
a(n) ~ c * d^n / n^(3/2), where d = 6.158893517087396289837838459951206775682824030495453326610366016992093939... and c = 0.1914250508201011360729769525164141605187995730026600722369002... - Vaclav Kotesovec, Aug 17 2018

A108919 Number of series-reduced labeled trees with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 13, 51, 601, 4803, 63673, 775351, 12186061, 196158183, 3661759333, 72413918019, 1583407093633, 36916485570331, 929770285841137, 24904721121298671, 711342228666833173, 21502519995056598639, 687345492498807434461, 23135454269839313430715, 818568166383797223246601, 30357965273255025673685091
Offset: 1

Views

Author

Vladeta Jovovic, Jul 20 2005

Keywords

Comments

"Series-reduced" means that if the tree is rooted at 1, then there is no node with just a single child.
Callan points out that A002792 is an incorrect version of this sequence. - Joerg Arndt, Jul 01 2014

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[(-1)^(n-k)*n!/k!*Binomial[n-1, k-1]*k^(k-1), {k, n}]/n; Table[ f[n], {n, 20}] (* Robert G. Wilson v, Jul 21 2005 *)
  • PARI
    a(n) = { 1/n * sum(k=1, n, (-1)^(n-k) * binomial(n,k) * (n-1)!/(k-1)! * k^(k-1) ); } \\ Joerg Arndt, Aug 28 2014

Formula

a(n) = A060356(n)/n.
1 = Sum_{n>=0} a(n+1)*(exp(x)-x)^(-n-1)*x^n/n!.
E.g.f.: A(x) = Sum_{n>=0} a(n+1)*x^n/n! satisfies A(x) = exp(x*A(x))/(1+x). - Olivier Gérard, Dec 31 2013 (edited by Gus Wiseman, Dec 31 2019)
E.g.f.: -Integral (LambertW(-x/(1 + x))/x) dx. - Ilya Gutkovskiy, Jul 01 2020

Extensions

More terms from Robert G. Wilson v, Jul 21 2005
New name (from A002792) by Joerg Arndt, Aug 28 2014
Offset corrected by Gus Wiseman, Dec 31 2019

A330465 Number of non-isomorphic series-reduced rooted trees whose leaves are multisets with a total of n elements.

Original entry on oeis.org

1, 4, 14, 87, 608, 5573, 57876, 687938, 9058892, 130851823, 2048654450, 34488422057, 620046639452, 11839393796270, 238984150459124, 5079583100918338, 113299159314626360, 2644085918303683758, 64393240540265515110, 1632731130253043991252, 43013015553755764179000
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2019

Keywords

Comments

Also inequivalent leaf-colorings of phylogenetic rooted trees with n labels. A phylogenetic rooted tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.

Examples

			Non-isomorphic representatives of the a(3) = 14 trees:
  ((1)((1)(1)))  ((1)((1)(2)))  ((1)((2)(3)))  ((2)((1)(1)))
  ((1)(1)(1))    ((1)(1)(2))    ((1)(2)(3))    ((2)(1,1))
  ((1)(1,1))     ((1)(1,2))     ((1)(2,3))
  (1,1,1)        (1,1,2)        (1,2,3)
		

Crossrefs

The version where leaves are atoms is A318231.
The case with sets as leaves is A330624.
The case with disjoint sets as leaves is A141268.
Labeled versions are A330467 (strongly normal) and A330469 (normal).
The singleton-reduced version is A330470.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n), p=sEulerT(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n ) + polcoef(p,n)); x*Ser(v)}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 13 2020

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 13 2020

A331934 Number of semi-lone-child-avoiding rooted trees with n unlabeled vertices.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 15, 29, 62, 129, 279, 602, 1326, 2928, 6544, 14692, 33233, 75512, 172506, 395633, 911108, 2105261, 4880535, 11346694, 26451357, 61813588, 144781303, 339820852, 799168292, 1882845298, 4443543279, 10503486112, 24864797324, 58944602767, 139918663784
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.

Examples

			The a(1) = 1 through a(7) = 15 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)    (oooooo)
                (o(o))  (o(oo))   (o(ooo))   (o(oooo))
                        (oo(o))   (oo(oo))   (oo(ooo))
                        ((o)(o))  (ooo(o))   (ooo(oo))
                                  ((o)(oo))  (oooo(o))
                                  (o(o)(o))  ((o)(ooo))
                                  (o(o(o)))  ((oo)(oo))
                                             (o(o)(oo))
                                             (o(o(oo)))
                                             (o(oo(o)))
                                             (oo(o)(o))
                                             (oo(o(o)))
                                             ((o)(o)(o))
                                             ((o)(o(o)))
                                             (o((o)(o)))
		

Crossrefs

The same trees counted by leaves are A050381.
The locally disjoint version is A331872.
Matula-Goebel numbers of these trees are A331935.
Lone-child-avoiding rooted trees are A001678.

Programs

  • Mathematica
    sse[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Union[Sort/@Tuples[sse/@c]]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[sse[n]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1,1]); for(n=2, n-1, v=concat(v, EulerT(v)[n] - v[n])); v} \\ Andrew Howroyd, Feb 09 2020

Formula

Product_{k > 0} 1/(1 - x^k)^a(k) = A(x) + A(x)/x - x where A(x) = Sum_{k > 0} x^k a(k).
Euler transform is b(1) = 1, b(n > 1) = a(n) + a(n + 1).

Extensions

Terms a(25) and beyond from Andrew Howroyd, Feb 09 2020
Previous Showing 11-20 of 143 results. Next