cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 117 results. Next

A339689 a(n) = Sum_{d|n} 9^(d-1).

Original entry on oeis.org

1, 10, 82, 739, 6562, 59140, 531442, 4783708, 43046803, 387427060, 3486784402, 31381119478, 282429536482, 2541866359780, 22876792461604, 205891136878357, 1853020188851842, 16677181742772430, 150094635296999122, 1350851718060419878, 12157665459057460324
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 9 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), this sequence (q=9).

Programs

  • Magma
    A339689:= func< n | (&+[9^(d-1): d in Divisors(n)]) >;
    [A339689(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[9^(d - 1), {d, Divisors[n]}], {n, 1, 21}]
    nmax = 21; CoefficientList[Series[Sum[x^k/(1 - 9 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 9^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339689(n): return sum(9^(k-1) for k in (1..n) if (k).divides(n))
    [A339689(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 9*x^k).
G.f.: Sum_{k>=1} 9^(k-1) * x^k / (1 - x^k).
a(n) ~ 9^(n-1). - Vaclav Kotesovec, Jun 05 2021

A085363 a(0)=1, for n>0: a(n) = 4*9^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).

Original entry on oeis.org

1, 4, 28, 212, 1676, 13604, 112380, 940020, 7936620, 67494980, 577309148, 4961187092, 42801458764, 370478720356, 3215827927228, 27982214082612, 244004165618220, 2131710838837380, 18654504783815580, 163488269572628820
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003

Keywords

Comments

Apparently, the number of 2-D directed walks of semilength n starting at (0,0) and ending on the X-axis using steps NE, SE, NW and SW avoiding adjacent NW/SE and adjacent NE/SW. - David Scambler, Jun 20 2013
Form an array with m(0,n) = m(n,0) = 2^n; m(i,j) equals the sum of the terms to the left of m(i,j) and the sum of the terms above m(i,j), which is m(i,j) = Sum_{k-0..j-1} m(i,k) + Sum_{k=0..i-1} m(k,j). m(n,n) = a(n). - J. M. Bergot, Jul 10 2013
From G. C. Greubel, May 22 2020: (Start)
This sequence is part of a class of sequences, for m >= 0, with the properties:
a(n) = 2*m*(4*m+1)^(n-1) - (1/2)*Sum_{k=1..n-1} a(k)*a(n-k).
a(n) = Sum_{k=0..n} m^k * binomial(n-1, n-k) * binomial(2*k, k).
a(n) = (2*m) * Hypergeometric2F1(-n+1, 3/2; 2; -4*m), for n > 0.
n*a(n) = 2*((2*m+1)*n - (m+1))*a(n-1) - (4*m+1)*(n-2)*a(n-2).
(4*m + 1)^n = Sum_{k=0..n} Sum_{j=0..k} a(j)*a(k-j).
G.f.: sqrt( (1 - t)/(1 - (4*m+1)*t) ).
This sequence is the case of m=2. (End)
The number of elements in the free group on two generators of length 2n that are zero exponent sum. - Tey Berendschot, Aug 09 2021

Crossrefs

Cf. A001019 (9^n), A084771, A085362, A085364, diagonal of A348595.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-9*x)) )); // G. C. Greubel, May 23 2020
    
  • Maple
    seq(coeff(series(sqrt((1-x)/(1-9*x)), x, n+1), x, n), n = 0..30); # G. C. Greubel, May 23 2020
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-9x)], {x, 0, 25}], x]
  • PARI
    my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-9*x)) ) \\ Joerg Arndt, May 10 2013
    
  • Sage
    def A085363_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt((1-x)/(1-9*x)) ).list()
    A085363_list(30) # G. C. Greubel, May 23 2020

Formula

G.f.: sqrt((1-x)/(1-9*x)).
Sum_{i=0..n} Sum_{j=0..i} a(j)*a(i-j) = 9^n.
From Vladeta Jovovic, Oct 10 2003: (Start)
First differences of A084771.
a(n) = Sum_{k=1..n} 2^k * binomial(n-1, k-1) * binomial(2*k, k). (End)
D-finite with recurrence n*a(n) = (10*n-6)*a(n-1) - (9*n-18)*a(n-2). - Vladeta Jovovic, Jul 16 2004
a(n) ~ 2*sqrt(2)*3^(2*n-1)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
a(0) = 1; a(n) = (4/n) * Sum_{k=0..n-1} (n+k) * a(k). - Seiichi Manyama, Mar 28 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-2)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A101990 a(1) = a(2) = 1, a(3) = 9; for n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + 9*a(n-3).

Original entry on oeis.org

1, 1, 9, 33, 81, 225, 729, 2241, 6561, 19521, 59049, 177633, 531441, 1592865, 4782969, 14353281, 43046721, 129127041, 387420489, 1162300833, 3486784401, 10460235105, 31381059609, 94143533121, 282429536481, 847287546561, 2541865828329, 7625600673633
Offset: 1

Views

Author

Gary W. Adamson, Dec 23 2004

Keywords

Comments

Alternate terms are powers of 9 (A001019): a(2b+1) = 9^b; b = 0, 1, 2, ...
a(n) is the number of solutions to Sum_{i=1..n} x_i^2 == 0 (mod 3) for (x_1, x_2, ..., x_n). - Jianing Song, Jul 03 2018

Examples

			a(5) = 81 since M^5 * [1 0 0]^T = [81 90 72]^T.
a(5) = 81 = 99 - 27 + 9 = 3*33 - 3*9 + 9*1 = 3*a(4) - 3*a(3) + 9*a(2).
a(7) = 729 = 9^3. (let b = 3, then n = 2b+1 = 7; and a(2b+1) = 9^b.
		

Crossrefs

A318609 gives the number of solutions to Sum_{i=1..n} x_i^2 == 1 (mod 3);
A318610 gives the number of solutions to Sum_{i=1..n} x_i^2 == 2 (mod 3).

Programs

  • GAP
    a:=[1,1,9];; for n in [4..30] do a[n]:=3*a[n-1]-3*a[n-2]+9*a[n-3]; od; a; # G. C. Greubel, Dec 20 2019
  • Magma
    a:=[1,1,9]; [n le 3 select a[n] else 3*Self(n-1)-3*Self(n-2) + 9*Self(n-3):n in [1..30]]; // Marius A. Burtea, Dec 20 2019
    
  • Maple
    seq(`if`( `mod`(n,2)=1, 3^(n-1), 3^(n-1)-2*(-3)^(n/2 -1) ), n = 0..30); # G. C. Greubel, Dec 20 2019
  • Mathematica
    a[n_]:= a[n]= 3a[n-1] - 3a[n-2] + 9a[n-3]; a[1]= a[2]= 1; a[3]= 9; Table[ a[n], {n, 26}] (* Or *)
    a[n_] := (MatrixPower[{{1, 0, 2}, {2, 1, 0}, {0, 2, 1}}, n].{{1}, {0}, {0}})[[1, 1]]; Table[ a[n], {n, 26}] (* Robert G. Wilson v, Dec 23 2004 *)
  • PARI
    Vec(x*(1-2*x+9*x^2)/((1-3*x)*(1+3*x^2)) + O(x^40)) \\ Colin Barker, Sep 23 2016
    
  • PARI
    a(n) = ([1, 0, 2 ; 2, 1, 0 ; 0, 2, 1]^n*mattranspose([1, 0, 0]))[1]; \\ Michel Marcus, Dec 20 2019
    
  • Sage
    def A101990_list(n) :
        f = (exp(3*x/2)+2*cos(sqrt(3)*x/2))/3
        s = f.series(x,n+2)
        return [(2^i*factorial(i)*s.coefficient(x,i)) for i in (1..n)]
    A101990_list(26)  # Peter Luschny, Aug 01 2012
    

Formula

a(n) = first term in M^n * [1 0 0]^T, where M = the 3 X 3 matrix [1 0 2 / 2 1 0 / 0 2 1] and T denotes transpose. [Edited by Michel Marcus, Dec 20 2019]
G.f.: x*(1 - 2*x + 9*x^2)/((1 - 3*x)*(1 + 3*x^2)). - R. J. Mathar, Aug 22 2008
a(n) = 2^n*n!*[x^n] (exp(3*x/2) + 2*cos(sqrt(3)*x/2))/3. - Peter Luschny, Aug 01 2012
a(n) = 3^(n/2 - 1)*((-i)^n + i^n + 3^(n/2)) where i = sqrt(-1). - Colin Barker, Sep 23 2016
From Jianing Song, Sep 05 2018: (Start)
E.g.f.: 1/3*(exp(3*x) + 2*cos(sqrt(3)*x)) (with a(0) = 1 prepended).
a(n) = 3^(n/2 - 1)*(2*cos(n*Pi/2) + 3^(n/2)).
a(n) = 3^(n-1) for odd n and 3^(n-1) - 2*(-3)^(n/2-1) for even n.
a(n) = a(n-1) + 2*A318610(n-1).
a(n) + A318609(n) + A318610(n) = 3^n.
(End)

Extensions

Edited and extended by Robert G. Wilson v, Dec 23 2004

A135779 Numbers having number of divisors equal to number of digits in base 9.

Original entry on oeis.org

1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 121, 169, 289, 361, 529, 731, 734, 737, 745, 746, 749, 753, 755, 758, 763, 766, 767, 771, 778, 779, 781, 785, 789, 791, 793, 794, 799, 802, 803, 807, 813, 815, 817
Offset: 1

Views

Author

M. F. Hasler, Nov 28 2007

Keywords

Comments

Since 9 is not a prime, no element > 1 of the sequence A001019(k)=9^k (having k+1 digits in base 9, but 2k+1 divisors) can be member of this sequence. Also, no power of a prime less than 9 can be in the sequence, since it will always have fewer divisors than digits in base 9. However all powers of 11 up to 11^10 are in this sequence, having the same number of digits (in base 9) than the same power of 9 (since 10 = floor(log(11/9)/log(9))) and also that number of divisors (since 11 is prime).

Examples

			a(1) = 1 since 1 has 1 divisor and 1 digit (in base 9 as in any other base).
It is followed by the primes (having 2 divisors {1,p}) between 9 and 9^2 - 1 (to have 2 digits in base 9).
Then come the squares of primes (3 divisors) between 9^2 = 100_9 and 9^3 - 1 = 888_9.
These are followed by all semiprimes and cubes of primes (4 divisors) between 9^3 and 9^4 - 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], DivisorSigma[0, #] == IntegerLength[#, 9] &] (* G. C. Greubel, Nov 09 2016 *)
  • PARI
    for(d=1,4,for(n=9^(d-1),9^d-1,d==numdiv(n)&print1(n", ")))

A165830 Totally multiplicative sequence with a(p) = 9.

Original entry on oeis.org

1, 9, 9, 81, 9, 81, 9, 729, 81, 81, 9, 729, 9, 81, 81, 6561, 9, 729, 9, 729, 81, 81, 9, 6561, 81, 81, 729, 729, 9, 729, 9, 59049, 81, 81, 81, 6561, 9, 81, 81, 6561, 9, 729, 9, 729, 729, 81, 9, 59049, 81, 729
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    9^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)
  • PARI
    a(n) = 9^bigomega(n); \\ Altug Alkan, Apr 09 2016

Formula

a(n) = A001019(A001222(n)) = 9^bigomega(n) = 9^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 9 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019

A212703 Main transitions in systems of n particles with spin 4.

Original entry on oeis.org

8, 144, 1944, 23328, 262440, 2834352, 29760696, 306110016, 3099363912, 30993639120, 306837027288, 3012581722464, 29372671794024, 284688972772848, 2745215094595320, 26354064908115072, 252010745683850376, 2401514164751985936, 22814384565143866392, 216136274827678734240
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please, refer to the general explanation in A212697.
This sequence is for base b=9 (see formula), corresponding to spin S=(b-1)/2=4.

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212700, A212701, A212702, A212704 (b = 2, 3, 4, 5, 6, 7, 8, 10).

Programs

  • Mathematica
    LinearRecurrence[{18,-81},{8,144},30] (* Harvey P. Dale, Jun 28 2017 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212703.txt", n, " ", mtrans(n, 9)))
    
  • PARI
    Vec(8*x/(9*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
    
  • PARI
    a(n)=8*n*9^(n-1) \\ Charles R Greathouse IV, Jun 16 2015

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=9.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 18*a(n-1) - 81*a(n-2) for n > 2.
G.f.: 8*x/(9*x-1)^2. (End)
From Elmo R. Oliveira, May 13 2025: (Start)
E.g.f.: 8*x*exp(9*x).
a(n) = 8*A053540(n) = A008590(n)*A001019(n-1). (End)

A010690 Period 2: repeat (1,9).

Original entry on oeis.org

1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1
Offset: 0

Views

Author

Keywords

Comments

Digital roots of the nonzero square triangular numbers. - Ant King, Jan 21 2012
Continued fraction expansion of A176019. - R. J. Mathar, Mar 08 2012
Exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + x + 5*x^2 + 5*x^3 + 15*x^4 + 15*x^5 + ... is the o.g.f. for A189976 (taken with an offset of 0). - Peter Bala, Mar 13 2015
Final digit of 9^n. - Martin Renner, Jun 11 2020
Decimal expansion of 19/99. - Stefano Spezia, Feb 09 2025

Examples

			0.191919191919191919191919191919191919191...
		

Crossrefs

Programs

  • Mathematica
    5+4*(-1)^# &/@Range[81] (* Ant King, Jan 21 2012 *)
  • PARI
    a(n)=1; if(n%2==1, 9, 1) \\ Felix Fröhlich, Aug 11 2014

Formula

G.f.: (1+9x)/((1-x)(1+x)). - R. J. Mathar, Nov 21 2011
a(n) = 9^n mod 10. - Martin Renner, Jun 11 2020
E.g.f.: cosh(x) + 9*sinh(x). - Stefano Spezia, Feb 09 2025
From Amiram Eldar, Jun 09 2025: (Start)
With offset 1:
Multiplicative with a(2^e) = 9, a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 1/2^(s-3)). (End)

A128969 a(n) = (n^3 - n)*9^n.

Original entry on oeis.org

0, 486, 17496, 393660, 7085880, 111602610, 1607077584, 21695547384, 278942752080, 3451916556990, 41422998683880, 484649084601396, 5551434969070536, 62453643402043530, 691794203838020640, 7560322370515511280, 81651481601567521824, 872650209616752889494
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n)*9^n: n in [0..25]]; // Vincenzo Librandi, Feb 11 2013
    
  • Magma
    I:=[0, 486, 17496, 393660]; [n le 4 select I[n] else 36*Self(n-1) - 486*Self(n-2) + 2916*Self(n-3) - 6561*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
  • Mathematica
    CoefficientList[Series[486 x/(1 - 9 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2013 *)

Formula

From R. J. Mathar, Dec 19 2008 (Start)
G.f.: 486x^2/(1-9x)^4.
a(n) = 486*A038291(n+1,3). (End)
a(n) = 36*a(n-1) - 486*a(n-2) + 2916*a(n-3) - 6561*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A001019(n).
Sum_{n>=2} 1/a(n) = (32/9)*log(9/8) - 5/12.
Sum_{n>=2} (-1)^n/a(n) = (50/9)*log(10/9) - 7/12. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008

A173000 a(n) = binomial(n + 4, 4)*9^n.

Original entry on oeis.org

1, 45, 1215, 25515, 459270, 7440174, 111602610, 1578379770, 21308126895, 277005649635, 3490271185401, 42835146366285, 514021756395420, 6049640671423020, 70002984912180660, 798034027998859524, 8977882814987169645, 99812932472504415465, 1097942257197548570115
Offset: 0

Views

Author

Zerinvary Lajos, Feb 07 2010

Keywords

Comments

Number of n-permutations (n>=4) of 10 objects p, r, q, u, v, w, z, x, y, z with repetition allowed, containing exactly 4 u's.

Crossrefs

Programs

Formula

G.f.: 1/(1-9*x)^5. - R. J. Mathar, Dec 21 2011
a(n) = 45*a(n-1)-810*a(n-2)+7290*a(n-3)-32805*a(n-4)+59049*a(n-5). - Wesley Ivan Hurt, Apr 21 2021
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 2172 - 18432*log(9/8).
Sum_{n>=0} (-1)^n/a(n) = 36000*log(10/9) - 3792. (End)
a(n) = A000332(n+4)*A001019(n). - Michel Marcus, Aug 28 2022

A203656 T(n,k)=1/25 the number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

9, 81, 81, 729, 1517, 729, 6561, 28057, 28057, 6561, 59049, 519445, 1116249, 519445, 59049, 531441, 9616161, 44577561, 44577561, 9616161, 531441, 4782969, 178019197, 1780968921, 3906948333, 1780968921, 178019197, 4782969, 43046721, 3295578857
Offset: 1

Views

Author

R. H. Hardin Jan 04 2012

Keywords

Comments

Table starts
........9..........81.............729...............6561.................59049
.......81........1517...........28057.............519445...............9616161
......729.......28057.........1116249...........44577561............1780968921
.....6561......519445........44577561.........3906948333..........343812029649
....59049.....9616161......1780968921.......343812029649........67213191427593
...531441...178019197.....71156938905.....30292030417413.....13192335511091073
..4782969..3295578857...2843024036697...2669260624372937...2592476403527692089
.43046721.61009378085.113591039131161.235230466316286557.509649251749126118193

Examples

			Some solutions for n=4 k=3
..1..1..1..0....2..4..1..4....3..1..1..3....3..0..4..4....0..3..4..0
..4..1..2..1....2..2..4..4....4..3..1..1....2..3..0..4....3..2..3..4
..0..4..1..4....1..2..2..4....3..1..0..1....4..2..3..0....2..2..2..3
..3..0..4..3....3..1..2..2....1..1..1..0....0..4..2..3....4..2..4..2
..4..3..0..4....2..3..1..2....4..1..1..1....0..0..4..2....2..4..3..4
		

Crossrefs

Column 1 is A001019
Previous Showing 31-40 of 117 results. Next