cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 92 results. Next

A008571 Digits of powers of 11.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 6, 1, 0, 5, 1, 1, 7, 7, 1, 5, 6, 1, 1, 9, 4, 8, 7, 1, 7, 1, 2, 1, 4, 3, 5, 8, 8, 8, 1, 2, 3, 5, 7, 9, 4, 7, 6, 9, 1, 2, 5, 9, 3, 7, 4, 2, 4, 6, 0, 1, 2, 8, 5, 3, 1, 1, 6, 7, 0, 6, 1, 1, 3, 1, 3, 8, 4, 2, 8, 3, 7, 6, 7, 2, 1, 3, 4, 5, 2, 2, 7, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The constant whose decimal expansion is this sequence is irrational (Mahler, 1981). - Amiram Eldar, Mar 23 2025

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 1;
  1, 3, 3, 1;
  1, 4, 6, 4, 1;
  1, 6, 1, 0, 5, 1;
  1, 7, 7, 1, 5, 6, 1;
  1, 9, 4, 8, 7, 1, 7, 1;
  2, 1, 4, 3, 5, 8, 8, 8, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    IntegerDigits[11^Range[0,20]]//Flatten (* Harvey P. Dale, Aug 26 2025 *)

A214112 T(n,k)=Number of 0..3 colorings of an nx(k+1) array circular in the k+1 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 1, 4, 4, 11, 25, 10, 111, 121, 172, 31, 670, 3502, 1331, 1201, 91, 4994, 44900, 110985, 14641, 8404, 274, 34041, 825105, 3008980, 3517864, 161051, 58825, 820, 241021, 12777541, 136579852, 201647240, 111505491, 1771561, 411772, 2461, 1678940
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Table starts
....1.....1.......4........10..........31............91.............274
....4....11.....111.......670........4994.........34041..........241021
...25...121....3502.....44900......825105......12777541.......214404272
..172..1331..110985...3008980...136579852....4797577911....191154162535
.1201.14641.3517864.201647240.22615881851.1801391900581.170522196557894

Examples

			Some solutions for n=4 k=1
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..1..0....1..2....2..3....1..0....1..0....1..0....1..2....1..0....1..0....1..2
..0..1....0..1....3..1....0..1....2..3....2..1....3..0....0..2....2..3....3..1
..1..2....1..0....1..0....1..0....3..2....3..0....0..1....1..3....3..1....0..2
		

Crossrefs

Column 1 is A034494(n-1)
Column 2 is A001020(n-1)
Row 1 is A006342(n-1)

Formula

Empirical for column k:
k=1: a(n) = 8*a(n-1) -7*a(n-2)
k=2: a(n) = 11*a(n-1)
k=3: a(n) = 35*a(n-1) -107*a(n-2) +73*a(n-3)
k=4: a(n) = 68*a(n-1) -66*a(n-2)
k=5: a(n) = 200*a(n-1) -5769*a(n-2) +11744*a(n-3) +43057*a(n-4) -89856*a(n-5) +40625*a(n-6)
k=6: a(n) = 416*a(n-1) -15454*a(n-2) +89758*a(n-3) +90848*a(n-4) -438718*a(n-5) +62801*a(n-6)
k=7: (order 15)
Empirical for row n:
n=1: a(k)=3*a(k-1)+a(k-2)-3*a(k-3)
n=2: a(k)=4*a(k-1)+22*a(k-2)-4*a(k-3)-21*a(k-4)
n=3: a(k)=11*a(k-1)+123*a(k-2)-509*a(k-3)-1615*a(k-4)+7137*a(k-5)-19*a(k-6)-20571*a(k-7)+13176*a(k-8)+13932*a(k-9)-11664*a(k-10)
n=4: (order 26)
n=5: (order 71)

A024127 a(n) = 11^n-1.

Original entry on oeis.org

0, 10, 120, 1330, 14640, 161050, 1771560, 19487170, 214358880, 2357947690, 25937424600, 285311670610, 3138428376720, 34522712143930, 379749833583240, 4177248169415650, 45949729863572160, 505447028499293770
Offset: 0

Views

Author

Keywords

Comments

In base 11 these are 0, A, AA, AAA, ... - David Rabahy, Dec 12 2016

Crossrefs

Cf. A001020.

Programs

Formula

G.f.: 1/(1-11*x)-1/(1-x). - Mohammad K. Azarian, Jan 14 2009
E.g.f.: e^(11*x)-e^x. - Mohammad K. Azarian, Jan 14 2009
a(n) = 11*a(n-1)+10 for n>0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = Sum_{i=1..n} 10^i*binomial(n,n-i) for n>0, a(0)=0. - Bruno Berselli, Nov 11 2015
a(n) = A001020(n) - 1. - Sean A. Irvine, Jun 19 2019

A062634 Numbers k such that every divisor of k contains the digit 1.

Original entry on oeis.org

1, 11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 211, 221, 241, 251, 271, 281, 311, 313, 317, 331, 341, 361, 401, 419, 421, 431, 451, 461, 491, 521
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Comments

First composite term is 121. All powers of 11 are in the sequence. - Alonso del Arte, Sep 29 2013

Examples

			143 has divisors 1, 11, 13 and 143, all of which contain the digit 1.
		

Crossrefs

Cf. A027750, subsequence of A011531; A206159 and A208270 are subsequences.
Cf. A001020 (powers of 11).

Programs

  • Haskell
    a062634 n = a062634_list !! (n-1)
    a062634_list = filter
       (and . map ((elem '1') . show) . a027750_row) a011531_list
    -- Reinhard Zumkeller, Feb 05 2012
    
  • Maple
    q:= n-> andmap(x-> 1 in convert(x, base, 10), numtheory[divisors](n)):
    select(q, [$1..1000])[];  # Alois P. Heinz, May 09 2022
  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 525], fQ[#, 1] &] (* Robert G. Wilson v, Jun 11 2014 *)
  • PARI
    isok(m) = fordiv(m, d, if (! #select(x->(x==1), digits(d)), return(0))); return(1); \\ Michel Marcus, May 09 2022

Extensions

Offset corrected by Reinhard Zumkeller, Feb 05 2012

A133294 a(n) = 2*a(n-1) + 10*a(n-2), a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 12, 34, 188, 716, 3312, 13784, 60688, 259216, 1125312, 4842784, 20938688, 90305216, 389997312, 1683046784, 7266066688, 31362601216, 135385869312, 584397750784, 2522654194688, 10889285897216, 47005113741312
Offset: 0

Views

Author

Philippe Deléham, Dec 20 2007

Keywords

Comments

Binomial transform of [1, 0, 11, 0, 121, 0, 1331, 0, 14641, 0, ...]=: powers of 11 (A001020) with interpolated zeros. - Philippe Deléham, Dec 02 2008
A083101 is an essentially identical sequence (with a different start). - N. J. A. Sloane, Dec 31 2012

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=2*a[n-1]+10*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
    
  • Mathematica
    a[n_]:= Simplify[((1+Sqrt[11])^n + (1-Sqrt[11])^n)/2]; Array[a, 30, 0] (* Or *) CoefficientList[Series[(1-x)/(1-2x-10x^2), {x,0,30}], x] (* Or *) LinearRecurrence[{2, 10}, {1, 1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-2*x-10*x^2)) \\ G. C. Greubel, Aug 02 2019
    
  • Sage
    ((1-x)/(1-2*x-10*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
    

Formula

a(n) = Sum_{k=0..n} A098158(n,k)*11^(n-k).
G.f.: (1-x)/(1-2*x-10*x^2).
a(n) = A083101(n-1) for n >= 1.
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(11*k-1)/( x*(11*k+10) - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 14 2013

Extensions

Terms a(23) onward added by G. C. Greubel, Aug 02 2019

A319075 Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

If n = p - 1 where p is prime, then row n lists the numbers with p divisors.
The partial sums of column k give the column k of A319076.

Examples

			The corner of the square array is as follows:
         A000079 A000244 A000351  A000420    A001020    A001022     A001026
A000012        1,      1,      1,       1,         1,         1,          1, ...
A000040        2,      3,      5,       7,        11,        13,         17, ...
A001248        4,      9,     25,      49,       121,       169,        289, ...
A030078        8,     27,    125,     343,      1331,      2197,       4913, ...
A030514       16,     81,    625,    2401,     14641,     28561,      83521, ...
A050997       32,    243,   3125,   16807,    161051,    371293,    1419857, ...
A030516       64,    729,  15625,  117649,   1771561,   4826809,   24137569, ...
A092759      128,   2187,  78125,  823543,  19487171,  62748517,  410338673, ...
A179645      256,   6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
		

Crossrefs

Other rows n: A030635 (n=16), A030637 (n=18), A137486 (n=22), A137492 (n=28), A139571 (n=30), A139572 (n=36), A139573 (n=40), A139574 (n=42), A139575 (n=46), A173533 (n=52), A183062 (n=58), A183085 (n=60), A261700 (n=100).
Main diagonal gives A093360.
Second diagonal gives A062457.
Third diagonal gives A197987.
Removing the 1's we have A182944/ A182945.

Programs

  • PARI
    T(n, k) = prime(k)^n;

Formula

T(n,k) = A000040(k)^n, n >= 0, k >= 1.

A096884 a(n) = 101^n.

Original entry on oeis.org

1, 101, 10201, 1030301, 104060401, 10510100501, 1061520150601, 107213535210701, 10828567056280801, 1093685272684360901, 110462212541120451001, 11156683466653165551101, 1126825030131969720661201, 113809328043328941786781301, 11494742132376223120464911401, 1160968955369998535166956051501
Offset: 0

Views

Author

Paul Barry, Jul 14 2004

Keywords

Comments

A185817(n) = smallest m such that in decimal representation n is a prefix of a(m).
a(n) gives the n-th row of Pascals' triangle (A007318) as long as all the binomial coefficients have at most two digits, otherwise the binomial coefficients with more than two digits overlap. - Daniel Forgues, Aug 12 2012
From Peter M. Chema, Apr 10 2016: (Start)
One percent growth applied n times increases a value by factor of a(n)/10^(2n), since 1% increases using "1.01". Therefore (a(n)/10^(2n) - 1)*100 = the percentage increase of one percent growth applied n times.
For instance, 432 increasing by 1% three times gives 445.090032 (i.e., 432*1.01^3), which is 1.030301 (a(3)/10^(2*3)) times 432 or a 3.0301% increase from the original 432 ((a(3)/10^(2*3)-1)*100 = 3.0301). (End)

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*10^(n-k).
a(n) = A096883(2n).
a(n) = 101^n. a(n) = Sum_{k=0..n,} binomial(n, k)*100^k. - Paul Barry, Aug 24 2004
G.f.: 1/(1-101*x). - Philippe Deléham, Nov 25 2008
E.g.f.: exp(101*x). - Ilya Gutkovskiy, Apr 10 2016

A239015 Exponents m such that the decimal expansion of 11^m exhibits its first zero from the right later than any previous exponent.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 36, 41, 366, 488, 4357, 69137, 89371, 143907, 542116, 2431369, 5877361, 8966861, 121915452, 123793821, 221788016, 709455085, 1571200127, 2640630712, 6637360862, 64994336645, 74770246842
Offset: 1

Views

Author

Keywords

Comments

Assume that a zero precedes all decimal expansions. This will take care of those cases in A001020.
Inspired by the seqfan list discussion Re: "possible sequence", beginning with David Wilson 7:57 PM Mar 06 2014 and continued by M. F. Hasler, Allan Wechsler and Franklin T. Adams-Watters.

Examples

			Illustration of initial term, with the 0 enclosed in parentheses:
n, position of 0, 11^a(n)
1, 2, (0)1
2, 3, (0)11
3, 4, (0)121
4, 5, (0)1331
5, 6, (0)14641
6, 7, (0)1771561
7, 8, (0)19487171
8, 9, (0)214358881
9, 10, (0)2357947691
10, 11, (0)3138428376721
11, 12, (0)34522712143931
12, 13, (0)379749833583241
13, 14, (0)4177248169415651
14, 15, (0)45949729863572161
15, 16, (0)5559917313492231481
16, 17, 3091268053287(0)672635673352936887453361
...
- _N. J. A. Sloane_, Jan 16 2020
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[11, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 40000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

a(28)-a(34) from Bert Dobbelaere, Jan 22 2019
a(35)-a(36) from Chai Wah Wu, Jan 16 2020

A166149 a(n) = (5^n + 10*(-6)^n)/11.

Original entry on oeis.org

1, -5, 35, -185, 1235, -6785, 43835, -247385, 1562435, -8983985, 55857035, -325376585, 2001087635, -11762385185, 71795014235, -424666569785, 2578516996835, -15318514090385, 92674023995435, -552229446706985
Offset: 0

Views

Author

Philippe Deléham, Oct 08 2009

Keywords

Comments

From Klaus Brockhaus, Oct 14 2009: (Start)
Fourth binomial transform of A014992.
Sixth binomial transform is A001020 preceded by 1.
Lim_{n -> infinity} a(n)/a(n-1) = -6. (End)

Crossrefs

Cf. A014992 (q-integers for q=-10), A001020 (powers of 11).

Programs

Formula

a(n) = 30*a(n-2)-a(n-1), a(0)= 1, a(1)= -5.
G.f.: (1-4x)/(1+x-30*x^2).
a(n) = Sum_{k=0..n} A112555(n,k)*(-6)^k.
E.g.f.: (1/11)*(exp(5*x) + 10*exp(-6*x)). - G. C. Greubel, May 01 2016

A009977 Powers of 33.

Original entry on oeis.org

1, 33, 1089, 35937, 1185921, 39135393, 1291467969, 42618442977, 1406408618241, 46411484401953, 1531578985264449, 50542106513726817, 1667889514952984961, 55040353993448503713, 1816331681783800622529, 59938945498865420543457, 1977985201462558877934081, 65273511648264442971824673
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 33), L(1, 33), P(1, 33), T(1, 33). Essentially same as Pisot sequences E(33, 1089), L(33, 1089), P(33, 1089), T(33, 1089). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 33-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-33*x). - Philippe Deléham, Nov 24 2008
a(n) = 33^n; a(n) = 33*a(n-1), n > 0; a(0)=1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 08 2025: (Start)
E.g.f.: exp(33*x).
a(n) = A000244(n)*A001020(n) = A327926(n)/A000244(n). (End)
Previous Showing 21-30 of 92 results. Next