cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 174 results. Next

A160830 Integer part of the product of two consecutive primes divided by their sum.

Original entry on oeis.org

1, 1, 2, 4, 5, 7, 8, 10, 12, 14, 16, 19, 20, 22, 24, 27, 29, 31, 34, 35, 37, 40, 42, 46, 49, 50, 52, 53, 55, 59, 64, 66, 68, 71, 74, 76, 79, 82, 84, 87, 89, 92, 95, 97, 98, 102, 108, 112, 113, 115, 117, 119, 122, 126, 129, 132, 134, 136, 139, 140, 143, 149, 154, 155, 157
Offset: 1

Views

Author

Cino Hilliard, May 27 2009

Keywords

Comments

The differences a(n+1) - a(n) appear to grow without bound while the difference 2 appears to occur infinitely often.

Examples

			a(5) = floor(prime(5)*prime(6)/(prime(5)+prime(6))) = 5.
		

Crossrefs

Programs

  • Magma
    [Floor(NthPrime(n)*NthPrime(n+1)/(NthPrime(n)+NthPrime(n+1))): n in [1..100]]; // G. C. Greubel, Apr 30 2018
  • Maple
    a:= n-> (l-> floor(mul(i,i=l)/add(i,i=l)))([ithprime(n+i)$i=0..1]):
    seq(a(n), n=1..65);  # Alois P. Heinz, Sep 20 2024
  • Mathematica
    Table[Floor[Prime[n]*Prime[n+1]/(Prime[n] +Prime[n+1])], {n, 1, 100}] (* G. C. Greubel, Apr 30 2018 *)
    Floor[Times@@#/Total[#]&/@Partition[Prime[Range[100]],2,1]] (* Harvey P. Dale, Sep 20 2024 *)
  • PARI
    g(x) = p1=prime(x);p2=prime(x+1);y=p1*p2/(p1+p2);floor(y);
    g1(n) = for(j=1,n,print1(g(j)","))
    

Formula

a(n) = floor(prime(n)*prime(n+1)/(prime(n)+prime(n+1))) where prime(.) = A000040(.).
a(n) = floor( A006094(n)/A001043(n) ). - R. J. Mathar, May 29 2009.

Extensions

Inserted "two" in definition - R. J. Mathar, May 29 2009

A162571 Palindromes which are sums of two consecutive primes.

Original entry on oeis.org

5, 8, 222, 434, 696, 828, 2112, 2992, 4224, 4554, 6336, 8448, 8888, 20202, 21712, 21812, 22722, 23832, 25652, 25952, 26862, 27672, 29092, 29292, 41114, 42024, 42724, 43334, 43734, 44544, 47174, 47974, 60106, 61116, 62526, 62626, 63936, 64146, 64446, 64946
Offset: 1

Views

Author

Claudio Meller, Jul 06 2009

Keywords

Examples

			a(3) = 222= A002113(32) = A001043(29). a(4) = 434= A002113(53) = A001043(47).
		

Programs

  • Maple
    isA002113 := proc(n) dgs := convert(n,base,10) ; for i from 1 to nops(dgs)/2 do if op(i,dgs) <> op(-i,dgs) then RETURN(false); end if; end do: true; end proc:
    A001043 := proc(n) ithprime(n)+ithprime(n+1) ; end proc:
    for n from 1 do ps := A001043(n) ; if isA002113(ps) then printf("%d,\n",ps) ; fi; end do: # R. J. Mathar, Aug 14 2009
  • Mathematica
    palQ[n_]:=Module[{idn=IntegerDigits[n]},idn==Reverse[idn]]; Select[Total/@ Partition[Prime[Range[5000]],2,1],palQ] (* Harvey P. Dale, Dec 30 2013 *)

Formula

A001043 INTERSECT A002113.

Extensions

Keyword:base added by R. J. Mathar, Aug 14 2009

A167597 The isolated nonprimes that are the sum of two successive primes.

Original entry on oeis.org

12, 18, 30, 42, 60, 138, 198, 240, 462, 600, 618, 810, 828, 882, 1230, 1290, 1320, 1428, 1482, 1620, 1668, 1722, 1878, 2088, 2112, 2688, 2970, 3330, 3390, 3768, 4002, 4092, 4242, 4260, 4482, 4518, 5100, 5280, 5418, 5502, 5520, 5652, 6090, 6198, 6300, 6450
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 07 2009

Keywords

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    Primes:= select(isprime, [seq(i,i=3..N+1,2)]):
    A001043:= convert(Primes[1..-2] + Primes[2..-1],set):
    Primes:= convert(Primes,set):
    A:= map(`+`,Primes intersect map(`-`,Primes,2),1) intersect A001043:
    sort(convert(A,list)); # Robert Israel, Jan 18 2016

Formula

A001043 INTERSECT A014574. [R. J. Mathar, May 30 2010]

Extensions

Corrected (60 inserted, 178 replaced by 198, 462 inserted....) by R. J. Mathar, May 30 2010

A180617 Sum of divisors of the product of two consecutive primes.

Original entry on oeis.org

12, 24, 48, 96, 168, 252, 360, 480, 720, 960, 1216, 1596, 1848, 2112, 2592, 3240, 3720, 4216, 4896, 5328, 5920, 6720, 7560, 8820, 9996, 10608, 11232, 11880, 12540, 14592, 16896, 18216, 19320, 21000, 22800, 24016, 25912, 27552, 29232, 31320, 32760, 34944, 37248, 38412
Offset: 1

Views

Author

Thomas Kellar, Sep 12 2010

Keywords

Examples

			a(1) = sigma(2*3) = 12, a(2) = sigma(3*5) = 24.
		

Crossrefs

A distant relative of A054640.

Programs

  • Magma
    [(1+NthPrime(n))*(1+NthPrime(n+1)): n in [1..50]]; // Vincenzo Librandi, Feb 16 2015
  • Mathematica
    DivisorSigma[1,#]&/@(Times@@@Partition[Prime[Range[50]],2,1]) (* Harvey P. Dale, Apr 04 2015 *)
    Table[Prime[n]*Prime[n+1]+Prime[n]+Prime[n+1]+1,{n,1,30}] (* Metin Sariyar, Dec 08 2019 *)
  • PARI
    for (n=1,10, i=prod(x=n,n+1,prime(x)); p=sigma(i); print1(p, ", "); )
    
  • PARI
    a(n)=my(p=prime(n)); (p+1)*(nextprime(p+1)+1) \\ Charles R Greathouse IV, Feb 16 2015
    

Formula

a(n) = A000203(A006094(n)). - Omar E. Pol, Dec 08 2019
a(n) = A006094(n) + A001043(n) + 1. - Metin Sariyar, Dec 08 2019
a(n) = A126199(n) + 1 (after above formula). - Omar E. Pol, Dec 08 2019

Extensions

More terms from Vincenzo Librandi, Feb 16 2015
Name simplified by Omar E. Pol, Dec 08 2019

A191583 Sum of the distinct prime divisors of prime(n) + prime(n+1).

Original entry on oeis.org

5, 2, 5, 5, 5, 10, 5, 12, 15, 10, 19, 18, 12, 10, 7, 9, 10, 2, 28, 5, 21, 5, 45, 36, 16, 22, 17, 5, 42, 10, 48, 69, 28, 5, 10, 20, 7, 21, 24, 13, 10, 36, 5, 23, 16, 48, 40, 10, 24, 23, 61, 10, 46, 129, 20, 28, 10, 139, 36, 52, 5, 10, 108, 18, 17, 5, 169, 24
Offset: 1

Views

Author

Michel Lagneau, Jun 07 2011

Keywords

Comments

a(n) = A008472(A001043(n)). [Reinhard Zumkeller, Jun 28 2011]

Examples

			a(6) = 10 because prime(6) + prime(7) = 13+17 = 30 = 2*3*5 and 2+3+5 = 10.
		

Programs

  • Maple
    with(numtheory):for n from 1 to 100 do:x:=ithprime(n)+ithprime(n+1):y:=factorset(x):n1:=nops(y):s:=0:for  k from 1 to n1 do:s:=s+y[k]:od:printf(`%d, `,s):od:
  • Mathematica
    sdpd[n_]:=Total[Transpose[FactorInteger[n]][[1]]]; sdpd/@(Total/@ Partition[ Prime[Range[70]],2,1]) (* Harvey P. Dale, Mar 18 2012 *)
  • PARI
    vecsum(v)=sum(i=1,#v,v[i])
    p=2;forprime(q=3,1e3,print1(vecsum(factor(p+q)[,1])", ");p=q)
    \\ Charles R Greathouse IV, Jun 12 2011

A206462 Primes p such that p + nextprime(p) is a squarefree number (A005117).

Original entry on oeis.org

2, 13, 19, 37, 67, 89, 103, 109, 127, 163, 193, 199, 211, 229, 307, 379, 389, 397, 449, 463, 467, 479, 487, 499, 509, 613, 643, 661, 683, 701, 719, 739, 757, 769, 797, 859, 877, 883, 887, 911, 929, 937, 967, 983, 997, 1009, 1093, 1109, 1163, 1201, 1237, 1279
Offset: 1

Views

Author

Zak Seidov, Feb 07 2012

Keywords

Examples

			13 + 17 = 30 = A206329(2).
		

Crossrefs

Programs

  • Haskell
    a206462 n = a206462_list !! (n-1)
    a206462_list = map (a000040 . (+ 1)) $
                       elemIndices 1 $ map a008966 a001043_list
    -- Reinhard Zumkeller, Feb 08 2012
  • Mathematica
    Prime[Select[Range[200], Abs[MoebiusMu[Prime[#] + Prime[# + 1]]] == 1 &]] (* Alonso del Arte, Feb 08 2012 *)

Formula

a(n) + nextprime(a(n)) = A206329(n).
A008966(A001043(A049084(a(n)))) = 1. [Reinhard Zumkeller, Feb 08 2012]

A240052 2nd arithmetic derivative of products of 2 successive prime numbers (A006094).

Original entry on oeis.org

1, 12, 16, 21, 44, 31, 60, 41, 56, 92, 72, 71, 124, 123, 140, 240, 244, 448, 121, 384, 236, 297, 176, 161, 249, 284, 247, 540, 191, 608, 221, 272, 380, 912, 520, 380, 1024, 371, 428, 912, 852, 508, 1472, 433, 696, 297, 293, 705, 860, 493, 716, 1456, 668, 512, 924, 636, 1188, 552, 669, 764, 2112, 1340, 521, 1504, 951, 1836, 672, 1176, 1300, 1107, 1076, 737, 908, 1520, 641, 776, 661, 821, 1647, 1416, 1828
Offset: 1

Views

Author

Freimut Marschner, Mar 31 2014

Keywords

Comments

The first arithmetic derivative of products of 2 successive prime numbers (A006094) is the sum of 2 successive prime numbers (A001043). A001043 = (A006094)’. The second arithmetic derivative is a(n)=( A001043)’ = (A006094)’’.

Examples

			(2*3)’ = 1*3+2*1 = 5; (5)’ = 1; (2^2)’ = 2*2^1 = 2*2 = 4.
		

Crossrefs

Cf. A003415 (1st derivative), A068346(2nd derivative).

Programs

  • Haskell
    a240052 = a068346 . a006094  -- Reinhard Zumkeller, Apr 15 2014
  • Maple
    with(numtheory); P:=proc(q) local a,b,c,p,n;
    for n from 1 to q do a:=ithprime(n)*ithprime(n+1);
    b:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]);
    c:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]);
    print(c); od; end: P(10^3); # Paolo P. Lava, Apr 01 2014

Formula

a(n) = (A006094(n))''.

A288632 Primes p such that (p+q)/6 is prime, q is the next prime after p.

Original entry on oeis.org

5, 7, 13, 19, 37, 67, 89, 109, 127, 307, 379, 389, 449, 487, 499, 683, 719, 769, 877, 929, 937, 1009, 1163, 1297, 1523, 1559, 1567, 1831, 1933, 1979, 2153, 2213, 2221, 2269, 2389, 2459, 2659, 2803, 2857, 2909, 3037, 3089
Offset: 1

Views

Author

Zak Seidov, Jun 12 2017

Keywords

Comments

Among first 2*10^6 primes there are 61953 terms of the sequence; e.g., a(60000)=31320053 and (31320053+31320061)/6=10440019=A000040(691876).
Except for the case 7-5=2 the minimal value of first differences is 4.

Examples

			5+7=6*2, 7+11=6*3, 13+17=6*5, 19+23=6*7, 37+41=6*11, 67+71=6*23.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(# + NextPrime[#])/6] &]

A291339 Primes p such that p^3*q^3 + p^3 + q^3 is prime, where q is the next prime after p.

Original entry on oeis.org

2, 3, 7, 19, 37, 47, 83, 89, 107, 137, 181, 251, 257, 349, 379, 569, 631, 653, 677, 691, 797, 823, 839, 863, 883, 919, 1009, 1021, 1223, 1229, 1361, 1423, 1571, 1609, 1831, 1873, 1907, 1993, 2053, 2113, 2207, 2239, 2293, 2309, 2579, 2833, 3137, 3319, 3593, 3673
Offset: 1

Views

Author

K. D. Bajpai, Aug 22 2017

Keywords

Examples

			a(2) = 3 is prime; 5 is the next prime: 3^3*5^3 + 3^3 + 5^3 = 27*125 + 27 + 125 = 3527 that is a prime.
a(3) = 7 is prime; 11 is the next prime: 7^3*11^3 + 7^3 + 11^3 = 343*1331 + 343 + 1331 = 458207 that is a prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo (5000) | IsPrime(p^3*q^3+p^3+q^3)];
    
  • Maple
    select(p -> andmap(isprime,[p,(p^3*nextprime(p)^3+p^3+nextprime(p)^3)]), [seq(p, p=1..10^4)]);
  • Mathematica
    Prime@Select[Range[1000], PrimeQ[Prime[#]^3*Prime[# + 1]^3 + Prime[#]^3 + Prime[# + 1]^3] &]
    Select[Partition[Prime[Range[600]],2,1],PrimeQ[Times@@(#^3)+Total[#^3]]&][[;;,1]] (* Harvey P. Dale, Apr 28 2025 *)
  • PARI
    is(n) = my(q=nextprime(n+1)); ispseudoprime(n^3*q^3+n^3+q^3)
    forprime(p=1, 3700, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Aug 22 2017
    
  • PARI
    list(lim)=my(v=List(),p=2,p3=8,q3); forprime(q=3,nextprime(lim\1+1), q3=q^3; if(isprime(p3*q3+p3+q3), listput(v,p)); p=q; p3=q3); Vec(v) \\ Charles R Greathouse IV, Aug 23 2017

A336370 Numbers k such that gcd(k, prime(k) + prime(k-1)) = 1.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 25, 29, 31, 33, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 119, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 169, 171
Offset: 1

Views

Author

Clark Kimberling, Oct 04 2020

Keywords

Examples

			In the following table, p(k) = A000040(k) = prime(k).
  k    p(k)   p(k)+p(k-1)   gcd
  2     3         5          1
  3     5         8          1
  4     7        12          4
  5    11        18          1
  6    13        24          6
2 and 3 are in this sequence; 4 and 6 are in A336371; 3 and 5 are in A336372; 7 and 13 are in A336373.
		

Crossrefs

Programs

  • Mathematica
    p[n_] := Prime[n];
    u = Select[Range[2, 200], GCD[#, p[#] + p[# - 1]] == 1 &]  (* this sequence *)
    v = Select[Range[2, 200], GCD[#, p[#] + p[# - 1]] > 1 &]   (* A336371 *)
    Prime[u]  (* A336372 *)
    Prime[v]  (* A336373 *)

Extensions

Offset corrected by Mohammed Yaseen, Jun 02 2023
Previous Showing 71-80 of 174 results. Next