A084942
Enneagorials: n-th polygorial for k=9.
Original entry on oeis.org
1, 1, 9, 216, 9936, 745200, 82717200, 12738448800, 2598643555200, 678245967907200, 220429939569840000, 87290256069656640000, 41375581377017247360000, 23128949989752641274240000, 15056946443328969469530240000, 11292709832496727102147680000000, 9666559616617198399438414080000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*product(7*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[9, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
a(n)=n!/2^n*prod(i=1,n,7*i-5) \\ Charles R Greathouse IV, Dec 13 2016
A084943
Decagorials: n-th polygorial for k=10.
Original entry on oeis.org
1, 1, 10, 270, 14040, 1193400, 150368400, 26314470000, 6104957040000, 1813172240880000, 670873729125600000, 302564051835645600000, 163384587991248624000000, 104075982550425373488000000, 77224379052415627128096000000, 66026844089815361194522080000000, 64442199831659792525853550080000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*product(8*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[10, #] &, 14, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
a(n)=n!/2^n*prod(i=1,n,8*i-6) \\ Charles R Greathouse IV, Dec 13 2016
A134375
a(n) = (n!)^4.
Original entry on oeis.org
1, 1, 16, 1296, 331776, 207360000, 268738560000, 645241282560000, 2642908293365760000, 17340121312772751360000, 173401213127727513600000000, 2538767161403058526617600000000, 52643875858853821607942553600000000, 1503561738404723998944447273369600000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A010050,
A009445,
A134366,
A134367,
A134368,
A134369,
A134371,
A134372,
A134373,
A134374.
-
a:= n-> (n!)^4:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 15 2013
-
Table[((n)!)^(4), {n, 0, 10}]
A298851
a(n) = [x^n] Product_{k=1..n} 1/(1-k^2*x).
Original entry on oeis.org
1, 1, 21, 1408, 196053, 46587905, 16875270660, 8657594647800, 5974284925007685, 5336898188553325075, 5992171630749371157181, 8260051854943114812198756, 13714895317396748230146099660, 26998129079190909699998105620908, 62173633286588800021263427046090792
Offset: 0
-
b:= proc(k, n) option remember; `if`(k=0, 1,
add(b(k-1, j)*j^2, j=1..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 19 2022
-
Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 02 2018 *)
Join[{1}, Table[2*Sum[(-1)^(n-k) * Binomial[2*n, n-k] * k^(4*n), {k, 0, n}]/(2*n)!, {n, 1, 20}]] (* Vaclav Kotesovec, May 15 2025 *)
-
a(n):=if n<1 then 1 else 2*sum((n-k)^(4*n)/((2*n-k)!*k!*(-1)^k),k,0,n);
makelist(a(n), n, 0, 20); /* Tani Akinari, Mar 09 2021 */
A162990
Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).
Original entry on oeis.org
4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1
The first few rows of the triangle are:
[4]
[36, 9]
[576, 144, 64]
[14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
MN(z;n=1) = 4
MN(z;n=2) = 36 + 9*z
MN(z;n=3) = 576 + 144*z + 64*z^2
MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
- Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.
A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
-
a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
-
Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)
A134367
a(n) = (n!)^(n-2).
Original entry on oeis.org
1, 1, 1, 6, 576, 1728000, 268738560000, 3252016064102400000, 4296582355504620109824000000, 828592942960967278432052230225920000000, 30067980714167580599742311330438184960000000000000000
Offset: 0
A134374
a(n) = ((2n+1)!)^2.
Original entry on oeis.org
1, 36, 14400, 25401600, 131681894400, 1593350922240000, 38775788043632640000, 1710012252724199424000000, 126513546505547170185216000000, 14797530453474819213543604224000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A010050,
A009445,
A134366,
A134367,
A134368,
A134369,
A134371,
A134372,
A134373,
A134375,
A334378.
A020549
a(n) = (n!)^2 + 1.
Original entry on oeis.org
2, 2, 5, 37, 577, 14401, 518401, 25401601, 1625702401, 131681894401, 13168189440001, 1593350922240001, 229442532802560001, 38775788043632640001, 7600054456551997440001, 1710012252724199424000001, 437763136697395052544000001
Offset: 0
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.
- F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.
- H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
- M. Le, On the Interesting Smarandache Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 133-134.
- M. Le, The Primes in Smarandache Power Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 96-97.
- G. C. Greubel, Table of n, a(n) for n = 0..250
- M. Fleuren, Smarandache Square Products.
- F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.
- Apoloniusz Tyszka, On sets X, subset of N, whose finiteness implies that we know an algorithm which for every n, element of N, decides the inequality max (X) < n, (2019).
- Apoloniusz Tyszka, On ZFC-formulae phi(x) for which we know a non-negative integer n such that max({x, element of N, phi(x)}) <= n if the set {x, element of N, phi(x)} is finite, 2019.
- Eric Weisstein's World of Mathematics, Factorial
- Eric Weisstein's World of Mathematics, Smarandache Sequences
For smallest prime factor see
A282706.
-
with(combinat):seq(fibonacci(3,n!), n=0..16); # Zerinvary Lajos, Apr 21 2008
[seq(n!^2+1,n=0..20)]; # N. J. A. Sloane, Feb 26 2017
-
Table[(n!)^2 + 1, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *)
-
a(n)=n!^2 + 1 \\ Charles R Greathouse IV, Nov 30 2016
A064618
Stirling transform of (n!)^2.
Original entry on oeis.org
1, 1, 5, 49, 821, 21121, 775205, 38516689, 2490976661, 203419086241, 20474978755205, 2490729330118129, 360263844701062901, 61114158974786823361, 12017074366801186956005, 2711409826920884006692369, 695820350706240448128979541, 201526362605605903609254528481
Offset: 0
-
a:= n-> add(Stirling2(n, k)*(k!^2), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 21 2012
-
Table[Sum[(k!)^2*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 10 2014 *)
-
/* By Vladeta Jovovic's formula: */
{a(n) = my(X=x+x*O(x^n)); n!*polcoeff( sum(m=0,n, m!*(exp(X)-1)^m), n)} /* Paul D. Hanna, Feb 15 2012 */
A134368
a(n) = ((2n)!)^(n+1).
Original entry on oeis.org
1, 4, 13824, 268738560000, 106562062388507443200000, 2283380023591730815784976384000000000000, 5785737804304645733190746102656048717392091545600000000000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A134367,
A134368,
A134369,
A134370,
A134371,
A134374,
A134375.
Comments