cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 128 results. Next

A084942 Enneagorials: n-th polygorial for k=9.

Original entry on oeis.org

1, 1, 9, 216, 9936, 745200, 82717200, 12738448800, 2598643555200, 678245967907200, 220429939569840000, 87290256069656640000, 41375581377017247360000, 23128949989752641274240000, 15056946443328969469530240000, 11292709832496727102147680000000, 9666559616617198399438414080000000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • Maple
    a := n->n!/2^n*product(7*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[9, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
  • PARI
    a(n)=n!/2^n*prod(i=1,n,7*i-5) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = polygorial(n, 9) = (A000142(n)/A000079(n))*A084947(n) = (n!/2^n)*Product_{i=0..n-1} (7*i+2) = (n!/2^n)*7^n*Pochhammer(2/7, n) = (n!/2^n)*7^n*Gamma(n+2/7)/Gamma(2/7).
D-finite with recurrence 2*a(n) = n*(7*n-5)*a(n-1). - R. J. Mathar, Mar 12 2019
a(n) ~ 7^n * n^(2*n + 2/7) * Pi /(Gamma(2/7) * 2^(n-1) * exp(2*n)). - Amiram Eldar, Aug 28 2025

A084943 Decagorials: n-th polygorial for k=10.

Original entry on oeis.org

1, 1, 10, 270, 14040, 1193400, 150368400, 26314470000, 6104957040000, 1813172240880000, 670873729125600000, 302564051835645600000, 163384587991248624000000, 104075982550425373488000000, 77224379052415627128096000000, 66026844089815361194522080000000, 64442199831659792525853550080000000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • Maple
    a := n->n!/2^n*product(8*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[10, #] &, 14, 0] (* Robert G. Wilson v, Dec 26 2016 *)
  • PARI
    a(n)=n!/2^n*prod(i=1,n,8*i-6) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = polygorial(n, 10) = (A000142(n)/A000079(n))*A084948(n) = (n!/2^n)*Product_{i=0..n-1} (8*i+2) = (n!/2^n)*8^n*Pochhammer(1/4, n) = (n!/2)*4^n*Gamma(n+1/4)*sqrt(2)*Gamma(3/4)/Pi.
a(n) = Product_{k=1..n} k*(4k-3). - Daniel Suteu, Nov 01 2017
D-finite with recurrence a(n) -n*(4*n-3)*a(n-1)=0. - R. J. Mathar, May 02 2022
a(n) ~ 2^(2*n+1) * n^(2*n + 1/4) * Pi /(Gamma(1/4) * exp(2*n)). - Amiram Eldar, Aug 28 2025

A134375 a(n) = (n!)^4.

Original entry on oeis.org

1, 1, 16, 1296, 331776, 207360000, 268738560000, 645241282560000, 2642908293365760000, 17340121312772751360000, 173401213127727513600000000, 2538767161403058526617600000000, 52643875858853821607942553600000000, 1503561738404723998944447273369600000000
Offset: 0

Views

Author

Artur Jasinski, Oct 22 2007

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_4(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_4 is A001159. - Enrique Pérez Herrero, Aug 13 2011

Crossrefs

Programs

  • Maple
    a:= n-> (n!)^4:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 15 2013
  • Mathematica
    Table[((n)!)^(4), {n, 0, 10}]

Formula

a(n) = det(S(i+4,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013

A298851 a(n) = [x^n] Product_{k=1..n} 1/(1-k^2*x).

Original entry on oeis.org

1, 1, 21, 1408, 196053, 46587905, 16875270660, 8657594647800, 5974284925007685, 5336898188553325075, 5992171630749371157181, 8260051854943114812198756, 13714895317396748230146099660, 26998129079190909699998105620908, 62173633286588800021263427046090792
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(k, n) option remember; `if`(k=0, 1,
          add(b(k-1, j)*j^2, j=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^2*x), {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 02 2018 *)
    Join[{1}, Table[2*Sum[(-1)^(n-k) * Binomial[2*n, n-k] * k^(4*n), {k, 0, n}]/(2*n)!, {n, 1, 20}]] (* Vaclav Kotesovec, May 15 2025 *)
  • Maxima
    a(n):=if n<1 then 1 else 2*sum((n-k)^(4*n)/((2*n-k)!*k!*(-1)^k),k,0,n);
    makelist(a(n), n, 0, 20); /* Tani Akinari, Mar 09 2021 */

Formula

From Vaclav Kotesovec, Feb 02 2018, updated May 12 2025: (Start)
a(n) ~ c * d^n * n^(2*n - 1/2), where d = 1.774513671664430848697327843228386312953174421074432567764556466987... and c = 0.617929515483613293691991371141292259390065108300160936187723552669...
In closed form, a(n) ~ n^(2*n - 1/2) * r^(4*n + 1) / (sqrt(Pi*(2 - r^2)) * (r^2 - 1)^n * exp(2*n)), where r = 1.04438203376083348498401390634474776086902815721... is the root of the equation (1-r)/(1+r) = -exp(-4/r). (End)
a(n) = 2*(Sum_{k=0..n} (n-k)^(4*n)/((2*n-k)!*k!*(-1)^k)) for n>0. - Tani Akinari, Mar 09 2021
a(n) = A036969(2n,n) = A269945(2n,n). - Alois P. Heinz, Feb 19 2022
From Seiichi Manyama, May 12 2025: (Start)
a(n) = Sum_{k=0..2*n} (-n)^k * binomial(4*n,k) * Stirling2(4*n-k,2*n).
a(n) = Sum_{k=0..2*n} (-1)^k * Stirling2(k+n,n) * Stirling2(3*n-k,n). (End)

A162990 Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).

Original entry on oeis.org

4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1

Views

Author

Johannes W. Meijer, Jul 21 2009

Keywords

Comments

The hypergeometric function 3F2([1,n+1,n+1],[n+2,n+2],z) = (n+1)^2*Li2(z)/z^(n+1) - MN(z;n)/(n!^2*z^n) for n >= 1, with Li2(z) the dilogarithm. The polynomial coefficients of MN(z;n) lead to the triangle given above.
We observe that 3F2([1,1,1],[2,2],z) = Li2(z)/z and that 3F2([1,0,0],[1,1],z) = 1.
The generating function for the EG1[3,n] coefficients of the EG1 matrix, see A162005, is GFEG1(z;m=2) = 1/(1-z)*(3*zeta(3)/2-2*z*log(2)* 3F2([1,1,1],[2,2],z) + sum((2^(1-2*n)* factorial(2*n-1)*z^(n+1)*3F2([1,n+1,n+1],[n+2,n+2],z))/(factorial(n+1)^2), n=1..infinity)).
The zeros of the MN(z;n) polynomials for larger values of n get ever closer to the unit circle and resemble the full moon, hence we propose to call the MN(z;n) the moon polynomials.

Examples

			The first few rows of the triangle are:
  [4]
  [36, 9]
  [576, 144, 64]
  [14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
  MN(z;n=1) = 4
  MN(z;n=2) = 36 + 9*z
  MN(z;n=3) = 576 + 144*z + 64*z^2
  MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
		

References

  • Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.

Crossrefs

A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A162991 and A162992 equal the first and second right hand columns.
A001048, A052747, A052759, A052778, A052794 are related to the square root of the first five right hand columns.
A001044, A162993 and A162994 equal the first, second and third left hand columns.
A000142, A001710, A002301, A133799, A129923, A001715 are related to the square root of the first six left hand columns.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
A129202(n)/A129203(n) = (n+1)^2*Li2(z=1)/(Pi^2) = (n+1)^2/6.
Cf. A002378 and A035287.

Programs

  • Maple
    a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
  • Mathematica
    Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)

Formula

a(n,m) = ((n+1)!/m)^2 for n >= 1 and 1 <= m <= n.

A134367 a(n) = (n!)^(n-2).

Original entry on oeis.org

1, 1, 1, 6, 576, 1728000, 268738560000, 3252016064102400000, 4296582355504620109824000000, 828592942960967278432052230225920000000, 30067980714167580599742311330438184960000000000000000
Offset: 0

Views

Author

Artur Jasinski, Oct 22 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^(n - 2), {n, 0, 10}]

Formula

a(n) ~ exp(1/12 + 2*n - n^2) * n^(n^2 - 3*n/2 - 1) * (2*Pi)^(n/2 - 1). - Vaclav Kotesovec, Oct 26 2017

A134374 a(n) = ((2n+1)!)^2.

Original entry on oeis.org

1, 36, 14400, 25401600, 131681894400, 1593350922240000, 38775788043632640000, 1710012252724199424000000, 126513546505547170185216000000, 14797530453474819213543604224000000
Offset: 0

Views

Author

Artur Jasinski, Oct 22 2007

Keywords

Crossrefs

Programs

Formula

a(n) = A009445(n)^2 = A001044(2n+1). - Wesley Ivan Hurt, May 02 2014
From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=0} 1/a(n) = A334378.
Sum_{n>=0} (-1)^n/a(n) = Im(BesselJ(0, 2*exp(3*Pi*i/4))). (End)

A020549 a(n) = (n!)^2 + 1.

Original entry on oeis.org

2, 2, 5, 37, 577, 14401, 518401, 25401601, 1625702401, 131681894401, 13168189440001, 1593350922240001, 229442532802560001, 38775788043632640001, 7600054456551997440001, 1710012252724199424000001, 437763136697395052544000001
Offset: 0

Views

Author

Keywords

Comments

Used to prove there are infinitely many primes of the form 4k+1 (see A282706). - N. J. A. Sloane, Feb 26 2017

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.
  • F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.
  • H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
  • M. Le, On the Interesting Smarandache Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 133-134.
  • M. Le, The Primes in Smarandache Power Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 96-97.

Crossrefs

Cf. A001044.
For smallest prime factor see A282706.

Programs

A064618 Stirling transform of (n!)^2.

Original entry on oeis.org

1, 1, 5, 49, 821, 21121, 775205, 38516689, 2490976661, 203419086241, 20474978755205, 2490729330118129, 360263844701062901, 61114158974786823361, 12017074366801186956005, 2711409826920884006692369, 695820350706240448128979541, 201526362605605903609254528481
Offset: 0

Views

Author

Karol A. Penson, Sep 26 2001

Keywords

Comments

From Thomas Wieder, Oct 21 2004: (Start)
"Also the number of hierarchies with labeled elements and labeled levels where the levels are permuted. Let l_x denote level x, e.g. l_2 is level 2. Let 1 denote an element and 2 a second element and so on. Then l_1:123 means elements 1,2 and 3 are on level 1.
"Let | indicate separation between levels. Then l_1:1|l_2:346|l_3:5 denotes a hierarchy of n=6 unlabeled elements with element 1 on level 1, elements 3,4 and 6 on level 2 and element 5 on level 3.
"E.g. for n=3 one has a(3) = 49 possible hierarchies:
"l_1:123,
"l_1:12|l_2:3, l_1:13|l_2:2, l_1:23|l_2:1,
"l_2:12|l_1:3, l_2:13|l_1:2, l_2:23|l_1:1,
"l_1:1|l_2:23, l_1:2|l_2:13, l_1:3|l_2:12,
"l_2:1|l_1:23, l_2:2|l_1:13, l_2:3|l_1:12,
"l_1:1|l_2:2|l_3:3 and further five permutations of the elements with levels fixed,
"l_3:1|l_1:2|l_2:3 and further five permutations of the elements with levels fixed,. etc., up to
"l_3:1|l_2:2|l_1:3 and further five permutations of the elements with levels fixed. this gives 1 + 6 +6 + 6*6 = 49 = a(3) possible hierarchies.
"See A001339 for the number of hierarchies with unlabeled elements and labeled levels."
(End)
Conjecture: for fixed k = 1,2,..., the sequence a(n) (mod k) is eventually periodic with the exact period dividing phi(k), where phi(k) is the Euler totient function A000010. For example, modulo 10 the sequence becomes (1, 1, 5, 9, 1, 1, 5, 9, ...), with an apparent period 1, 1, 5, 9 of length 4 = phi(10) beginning at a(0). - Peter Bala, Jan 15 2018

Crossrefs

Programs

  • Maple
    a:= n-> add(Stirling2(n, k)*(k!^2), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    Table[Sum[(k!)^2*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 10 2014 *)
  • PARI
    /* By Vladeta Jovovic's formula: */
    {a(n) = my(X=x+x*O(x^n)); n!*polcoeff( sum(m=0,n, m!*(exp(X)-1)^m), n)} /* Paul D. Hanna, Feb 15 2012 */

Formula

a(n) = Sum_{k=0..n} Stirling2(n, k)*(k!)^2.
E.g.f: hypergeom([1, 1], [], exp(x)-1). - Vladeta Jovovic, Sep 14 2003
O.g.f.: Sum_{n>=0} n!^2 * Product_{k=1..n} x/(1 - k*x). - Paul D. Hanna, Nov 25 2012
a(n) ~ exp(1/2) * (n!)^2. - Vaclav Kotesovec, May 10 2014

A134368 a(n) = ((2n)!)^(n+1).

Original entry on oeis.org

1, 4, 13824, 268738560000, 106562062388507443200000, 2283380023591730815784976384000000000000, 5785737804304645733190746102656048717392091545600000000000000
Offset: 0

Views

Author

Artur Jasinski, Oct 22 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((2n)!)^(n + 1), {n, 0, 10}]

Formula

a(n) ~ 2^((n+1)*(2*n+1)) * exp(1/24 - 2*n*(n+1)) * n^((n+1)*(4*n+1)/2) * Pi^((n+1)/2). - Vaclav Kotesovec, Oct 26 2017
Previous Showing 21-30 of 128 results. Next