cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 721 results. Next

A073372 Second convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 3, 12, 34, 99, 261, 678, 1692, 4149, 9959, 23568, 55014, 127031, 290457, 658602, 1482240, 3314025, 7365915, 16285300, 35832810, 78500811, 171293293, 372412782, 806963364, 1743173469, 3754782351, 8066319768, 17285917742, 36957928479, 78847115649
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Crossrefs

Third (m=2) column of triangle A073370.

Programs

  • Magma
    [(2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162: n in [0..40]]; // G. C. Greubel, Sep 28 2022
    
  • Mathematica
    CoefficientList[Series[-(-1+x+2x^2)^(-3),{x,0,78}],x] (* or *) Table[(-3*(-1)^n*n^2+3*2^(n+2)*n^2-15*(-1)^n*n+9*2^(n+2)*n-16*(-1)^n+2^(n+4))/162,{n,42}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
  • SageMath
    def A073372(n): return (2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162
    [A073372(n) for n in range(40)] # G. C. Greubel, Sep 28 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073371(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, 2) * binomial(n-k, k) * 2^k.
a(n) = ((30+9*n)*(n+1)*U(n+1) + 2*(33+9*n)*(n+2)*U(n))/162 with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1 - (1+2*x)*x)^3.
E.g.f.: (1/162)*(32*(4 + 9*x + 3*x^2)*exp(2*x) + (34 - 24*x + 3*x^2)*exp(-x)). - G. C. Greubel, Sep 28 2022

A073399 Coefficient triangle of polynomials (falling powers) related to convolutions of A001045(n+1), n>=0, (generalized (1,2)-Fibonacci). Companion triangle is A073400.

Original entry on oeis.org

1, 9, 30, 63, 531, 1050, 405, 6165, 29610, 44520, 2511, 59454, 502821, 1789614, 2245320, 15309, 517104, 6686631, 41182344, 120133692, 131891760, 92583, 4214349, 76790673, 714174327, 3559509360, 8966770308, 8862693840
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The row polynomials are p(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..
The k-th convolution of U0(n) := A001045(n+1), n>= 0, ((1,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073370(n+k,k) = (p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*2*U0(n))/(k!*9^k), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A073400(k,m).

Examples

			k=2: U2(n)=((9*n+30)*(n+1)*U0(n+1)+(9*n+33)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 9,30; 63,531,1050; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
		

Crossrefs

Formula

Recursion for row polynomials defined in the comments: see A073401.

A073400 Coefficient triangle of polynomials (falling powers) related to convolutions of A001045(n+1), n >= 0, (generalized (1,2)-Fibonacci). Companion triangle is A073399.

Original entry on oeis.org

2, 9, 33, 45, 396, 831, 243, 3744, 18297, 28236, 1377, 32481, 273483, 968679, 1210140, 8019, 268029, 3418767, 20681811, 58920534, 62686440, 47385, 2130138, 38186478, 347584284, 1683064737, 4075425738, 3810867480
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The row polynomials are q(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,...
The k-th convolution of U0(n) := A001045(n+1), n>= 0, ((1,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073370(n+k,k) = (p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*2*U0(n))/(k!*9^k), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A073399(k,m).

Examples

			k=2: U2(n)=((9*n+30)*(n+1)*U0(n+1)+(9*n+33)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 9,33; 45,396,831; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
		

Crossrefs

Formula

Recursion for row polynomials defined in the comments: see A073401.

A091593 Reversion of Jacobsthal numbers A001045.

Original entry on oeis.org

1, -1, -1, 5, -3, -21, 51, 41, -391, 407, 1927, -6227, -2507, 49347, -71109, -236079, 966129, 9519, -7408497, 13685205, 32079981, -167077221, 60639939, 1209248505, -2761755543, -4457338681, 30629783831, -22124857219, -206064020315, 572040039283, 590258340811
Offset: 0

Views

Author

Paul Barry, Jan 23 2004

Keywords

Comments

Hankel transform is (-2)^C(n+1,2). - Paul Barry, Apr 28 2009

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([-n,-n-1], [2], -2);
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 22 2014
    # Using function CompInv from A357588.
    CompInv(25, n -> (2^n - (-1)^n)/3 ); # Peter Luschny, Oct 07 2022
  • Mathematica
    a[n_] := Hypergeometric2F1[-n - 1, -n - 1, 2, -2] + (n + 1)*Hypergeometric2F1[-n, -n, 3, -2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 03 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n) := hypergeometric([ -n - 1, -n - 1 ], [ 2 ], -2) + (n + 1) * hypergeometric([ -n, -n ], [ 3 ], -2); /* Vladimir Kruchinin, Oct 12 2011 */
    
  • Sage
    # Algorithm of L. Seidel (1877)
    def A091593_list(n) :
        D = [0]*(n+2); D[1] = 1
        R = []; b = false; h = 1
        for i in range(2*n) :
            if b :
                for k in range(1, h, 1) : D[k] += -2*D[k+1]
                R.append(D[1])
            else :
                for k in range(h, 0, -1) : D[k] += D[k-1]
                h += 1
            b = not b
        return R
    A091593_list(30)  # Peter Luschny, Oct 19 2012

Formula

G.f.: (-(1+x)+sqrt(1+2*x+9*x^2))/(4*x^2). - Corrected by Seiichi Manyama, May 12 2019
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*C(k)*(-1)^(n-k)*2^k, where C(n) is A000108(n). - Paul Barry, May 16 2005
G.f.: 1/(1+x+2x^2/(1+x+2x^2/(1+x+2x^2/(1+x+2x^2/(1+ ... (continued fraction). - Paul Barry, Apr 28 2009
a(n) = Sum_{i=0..n} (2^(i)*(-1)^(n-i)*binomial(n+1,i)^2*(n-i+1)/(i+1))/(n+1). - Vladimir Kruchinin, Oct 12 2011
Conjecture: (n+2)*a(n) +(2*n+1)*a(n-1) +9*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
a(n) = (-1)^n*hypergeom([-n/2, (1-n)/2], [2], -8). - Peter Luschny, May 28 2014
R. J. Mathar's conjecture confirmed by Maple using this hypergeom form. - Robert Israel, Sep 22 2014
a(n) = Sum_{k = 0..n} (-2)^k * (1/(n+1))*binomial(n+1, k)*binomial(n+1, k+1) = Sum_{k = 0..n} (-2)^k * N(n+1,k+1), where N(n,k) = A001263(n,k) are the Narayana numbers. - Peter Bala, Sep 01 2023

A280049 Canonical representation of n as a sum of distinct Jacobsthal numbers J(n) (A001045) (see Comments for details); also binary numbers that end in an even number of zeros.

Original entry on oeis.org

1, 11, 100, 101, 111, 1001, 1011, 1100, 1101, 1111, 10000, 10001, 10011, 10100, 10101, 10111, 11001, 11011, 11100, 11101, 11111, 100001, 100011, 100100, 100101, 100111, 101001, 101011, 101100, 101101, 101111, 110000, 110001, 110011, 110100, 110101, 110111
Offset: 1

Views

Author

N. J. A. Sloane, Dec 31 2016

Keywords

Comments

Every positive integer has a unique expression as a sum of distinct Jacobsthal numbers in which the index of the smallest summand is odd, with J(1) = 1 and J(2) = 1 both allowed. [Carlitz-Scoville-Hoggatt, 1972]. - Based on a comment in A001045 from Ira M. Gessel, Dec 31 2016.
The highest-order bits are on the left. Interpreting these as binary numbers we get A003159.

Examples

			9 = 5+3+1 = J(4)+J(3)+J(1) = 1101.
		

Crossrefs

Programs

  • Mathematica
    FromDigits[IntegerDigits[#, 2]] & /@ Select[Range[100], EvenQ[IntegerExponent[#, 2]] &] (* Amiram Eldar, Jul 14 2023 *)
  • PARI
    lista(kmax) = for(k = 1, kmax, if(!(valuation(k, 2)%2), print1(fromdigits(binary(k), 10), ", "))); \\ Amiram Eldar, Jul 14 2023
    
  • Python
    from itertools import count, islice
    def A280049_gen(): # generator of terms
        return map(lambda n:int(bin(n)[2:]),filter(lambda n:(n&-n).bit_length()&1,count(1)))
    A280049_list = list(islice(A280049_gen(),20)) # Chai Wah Wu, Mar 19 2024
    
  • Python
    def A280049(n):
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1^1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return int(bin(m)[2:]) # Chai Wah Wu, Jan 30 2025

Formula

a(n) = A007088(A003159(n)). - Amiram Eldar, Jul 14 2023

Extensions

Corrected a(5), a(16) and more terms from Lars Blomberg, Jan 02 2017

A153643 Jacobsthal numbers A001045 incremented by 2.

Original entry on oeis.org

2, 3, 3, 5, 7, 13, 23, 45, 87, 173, 343, 685, 1367, 2733, 5463, 10925, 21847, 43693, 87383, 174765, 349527, 699053, 1398103, 2796205, 5592407, 11184813, 22369623, 44739245, 89478487, 178956973, 357913943, 715827885, 1431655767, 2863311533, 5726623063
Offset: 0

Views

Author

Paul Curtz, Dec 30 2008

Keywords

Crossrefs

Programs

  • GAP
    a:=[2,3,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Apr 02 2019
    
  • Magma
    I:=[2,3,3]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) -2*Self(n-3): n in [1..40]]; // G. C. Greubel, Apr 02 2019
    
  • Mathematica
    LinearRecurrence[{1,2},{0,1}, 40] + 2 (* Harvey P. Dale, May 26 2014 *)
    LinearRecurrence[{2,1,-2},{2,3,3}, 40] (* Georg Fischer, Apr 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec( (2-x-5*x^2)/((1-x^2)*(1-2*x)) ) \\ G. C. Greubel, Apr 02 2019
    
  • Python
    def A153643(n): return ((1<Chai Wah Wu, Apr 18 2025
  • Sage
    ((2-x-5*x^2)/((1-x^2)*(1-2*x))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 02 2019
    

Formula

a(n) = 2 + A001045(n) = A001045(n) + A007395(n) = 1 + A128209(n).
a(n) - A010684(n) = A078008(n), first differences of A001045. - Paul Curtz, Jan 17 2009
G.f.: (2 - x - 5*x^2)/((1+x)*(1-x)*(1-2*x)). - R. J. Mathar, Jan 23 2009
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n >= 3. - Andrew Howroyd, Feb 26 2018

Extensions

Edited and extended by R. J. Mathar, Jan 23 2009

A193449 Products of the Jacobsthal numbers and the integers: a(n) = n * A001045(n+1).

Original entry on oeis.org

0, 1, 6, 15, 44, 105, 258, 595, 1368, 3069, 6830, 15015, 32772, 70993, 152922, 327675, 699056, 1485477, 3145734, 6640975, 13981020, 29360121, 61516466, 128625315, 268435464, 559240525, 1163220318, 2415919095, 5010795188, 10379504289, 21474836490, 44381328715
Offset: 0

Views

Author

Olivier Gérard, Jul 26 2011

Keywords

Comments

a(n) = n * A001045(n+1).
This sequence is the sum of several triangles of integers (see formula section)

Crossrefs

Cf. A001045, Equals second column of A124860, equals sum of A193450 or A193451.

Programs

  • Magma
    [n*(2^(n + 1) + (-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Oct 21 2012
    
  • Mathematica
    Table[Sum[n Binomial[n, k] HypergeometricPFQ[{1, -k}, {-n}, -1], {k, 0, n}], {n, 0, 35}]
    CoefficientList[Series[(x*(1 + 4*x))/(2*x^2 + x - 1)^2, {x, 0, 100}], x] (* Vincenzo Librandi, Oct 21 2012 *)
  • Python
    def A193449(n): return (((1<Chai Wah Wu, Apr 18 2025

Formula

G.f.: x*(1 + 4*x)/( 2*x^2+x-1)^2
a(n) = n*(2^(n + 1) + (-1)^n)/3
a(n)= sum( sum( (-1)^(j+k)*(j+k)*C(n-k+j,j), j=0..k), k=0..n)
a(n)= sum( n*C(n, k)*2F1( (1, -k); -n )(-1), k=0..n)
a(n)= sum( sum( (-1)^j*n*C(n-j,k-j), j=0..k), k=0..n)
a(n)= sum( (1+2*k)*C(n+1, k+1)*2F1( (1, n+2); k+2 )(-1) - C(n+2, k+2) 2F1( (2, n+3); k+3 )(-1) - (-1)^(k) * 2^(k-n-2) * (n-3*k+1) , k=0..n) with C(n,k) the binomial coefficient and 2F1( ) the hypergeometric function.

A197911 Representable by A001045 (Jacobsthal sequence). Complement of A003158.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33, 35, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 88
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2011

Keywords

Comments

a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060.
The sequence of Jacobsthal numbers A001045 begins [1, 1, 3, 5, 11, 21, ...] with two occurrences of the term 1. Allowing for this, we find that the numbers representable as a sum of distinct Jacobsthal numbers form A050292. - Peter Bala, Feb 02 2013
Partial sums of A056832. - Reinhard Zumkeller, Jul 29 2014

Crossrefs

Programs

  • Haskell
    a197911 n = a197911_list !! n
    a197911_list = scanl (+) 0 a056832_list
    -- Reinhard Zumkeller, Jul 29 2014
    
  • Python
    def A197911(n): return n+sum((~(i+1)&i).bit_length()&1 for i in range(n)) # Chai Wah Wu, Jan 09 2023

Formula

a(n) = Sum_{k>=0} A030308(n,k)*A001045(k+2).

A293433 a(n) is the number of the proper divisors of n that are Jacobsthal numbers (A001045).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 2, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Examples

			For n = 21, whose proper divisors are [1, 3, 7], both 1 and 3 are in A001045, thus a(21) = 2.
		

Crossrefs

Programs

  • Mathematica
    With[{s = LinearRecurrence[{1, 2}, {0, 1}, 24]}, Table[DivisorSum[n, 1 &, And[MemberQ[s, #], # != n] &], {n, 105}]] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    A147612aux(n,i) = if(!(n%2),n,A147612aux((n+i)/2,-i));
    A147612(n) = 0^(A147612aux(n,1)*A147612aux(n,-1));
    A293433(n) = sumdiv(n,d,(dA147612(d));
    
  • Python
    from sympy import divisors
    def A293433(n): return sum(1 for d in divisors(n,generator=True) if d(m-3).bit_length()) # Chai Wah Wu, Apr 18 2025

Formula

a(n) = Sum_{d|n, dA147612(d).
a(n) = A293431(n) - A147612(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=2} 1/A001045(n) = 1.718591611927... . - Amiram Eldar, Jul 05 2025

A073401 Coefficient triangle of polynomials (rising powers) related to convolutions of A001045(n+1), n >= 0, (generalized (1,2)-Fibonacci). Companion triangle is A073402.

Original entry on oeis.org

1, 30, 9, 1050, 531, 63, 44520, 29610, 6165, 405, 2245320, 1789614, 502821, 59454, 2511, 131891760, 120133692, 41182344, 6686631, 517104, 15309, 8862693840, 8966770308, 3559509360, 714174327, 76790673, 4214349, 92583
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The row polynomials are p(k,x) := sum(a(k,m)*x^m,m=0..k), k=0,1,2,...
The k-th convolution of U0(n) := A001045(n+1), n>= 0, ((1,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073370(n+k,k) = (p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*2*U0(n))/(k!*9^k)), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^m,m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A073402(k,m).

Examples

			k=2: U2(n)=((30+9*n)*(n+1)*U0(n+1)+(33+9*n)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 30,9; 1050,531,63; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
		

Crossrefs

Formula

Recursion for row polynomials defined in the comments: p(k, n)= (n+2)*p(k-1, n+1)+4*(n+2*(k+1))*p(k-1, n)+2*(n+3)*q(k-1, n+1); q(k, n)= (n+1)*p(k-1, n+1)+4*(n+2*(k+1))*q(k-1, n), k >= 1. [Corrected by Sean A. Irvine, Nov 25 2024]
Previous Showing 11-20 of 721 results. Next