cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 126 results. Next

A308662 Number of ways to write n as (2^a*5^b)^2 + c*(3c+1) + d*(3d+2), where a and b are nonnegative integers, and c and d are integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 1, 2, 3, 1, 3, 2, 2, 2, 2, 4, 2, 2, 5, 3, 3, 3, 3, 3, 4, 6, 4, 3, 3, 5, 4, 4, 3, 6, 5, 6, 3, 2, 6, 3, 6, 2, 3, 4, 4, 6, 5, 5, 4, 4, 6, 1, 4, 4, 4, 6, 3, 5, 2, 6, 7, 3, 2, 5, 5, 4, 5, 6, 8, 5, 6, 5, 4, 8, 3, 7, 3, 3, 7, 3, 6, 7, 4, 4, 7, 7, 4, 4, 8, 7, 4, 3, 6, 4, 7, 7, 4, 1, 6, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 15 2019

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 0.
Conjecture 2: Let r be 1 or 2. Then, any positive integer n can be written as (2^a*5^b)^2 + c*(2c+1) + d*(3d+r), where a and b are nonnegative integers, and c and d are integers.
We have verified Conjectures 1 and 2 for all n = 1..10^8.

Examples

			a(3) = 1 with 3 = (2^0*5^0)^2 + (-1)*(3*(-1)+1) + 0*(3*0+2).
a(7) = 1 with 7 = (2^1*5^0)^2 + (-1)*(3*(-1)+1) + (-1)*(3*(-1)+2).
a(10) = 1 with 10 = (2^0*5^0)^2 + 1*(3*1+1) + 1*(3*1+2).
a(52) = 1 with 52 = (2^0*5^0)^2 + 3*(3*3+1) + (-3)*(3*(-3)+2).
a(98) = 1 with 98 = (2^0*5^1)^2 + 4*(3*4+1) + (-3)*(3*(-3)+2).
a(14596) = 1 with 14596 = (2^3*5^0)^2 + (-36)*(3*(-36)+1) + (-60)*(3*(-60)+2).
a(22163) = 1 with 22163 = (2^3*5^0)^2 + 66*(3*66+1) + (-55)*(3*(-55)+2).
a(150689) = 1 with 150689 = (2^6*5^1)^2 + 117*(3*117+1) + (-49)*(3*(-49)+2).
		

Crossrefs

Programs

  • Mathematica
    OctQ[n_]:=OctQ[n]=IntegerQ[Sqrt[3n+1]];
    tab={};Do[r=0;Do[If[OctQ[n-4^a*25^b-x(3x+1)],r=r+1],{a,0,Log[4,n]},{b,0,Log[25,n/4^a]},{x,-Floor[(Sqrt[12(n-4^a*25^b)+1]+1)/6],(Sqrt[12(n-4^a*25^b)+1]-1)/6}];tab=Append[tab,r],{n,1,100}];Print[tab]

A317300 Sequence obtained by taking the general formula for generalized k-gonal numbers: m*((k - 2)*m - k + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and k >= 5. Here k = 0.

Original entry on oeis.org

0, 1, -3, 0, -8, -3, -15, -8, -24, -15, -35, -24, -48, -35, -63, -48, -80, -63, -99, -80, -120, -99, -143, -120, -168, -143, -195, -168, -224, -195, -255, -224, -288, -255, -323, -288, -360, -323, -399, -360, -440, -399, -483, -440, -528, -483, -575, -528, -624, -575, -675, -624, -728, -675, -783
Offset: 0

Views

Author

Omar E. Pol, Jul 29 2018

Keywords

Comments

Taking the same formula with k = 1 we have A317301.
Taking the same formula with k = 2 we have A001057 (canonical enumeration of integers).
Taking the same formula with k = 3 we have 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Taking the same formula with k = 4 we have A008794 (squares repeated) except the initial zero.
Taking the same formula with k >= 5 we have the generalized k-gonal numbers (see Crossrefs section).

Crossrefs

Row 0 of A303301.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • PARI
    concat(0, Vec(x*(1 - 4*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50))) \\ Colin Barker, Aug 01 2018

Formula

a(n) = -A174474(n+1).
From Colin Barker, Aug 01 2018: (Start)
G.f.: x*(1 - 4*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = -n*(n + 4) / 4 for n even.
a(n) = -(n - 3)*(n + 1) / 4 for n odd.
(End)

A317301 Sequence obtained by taking the general formula for generalized k-gonal numbers: m*((k - 2)*m - k + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and k >= 5. Here k = 1.

Original entry on oeis.org

0, 1, -2, 1, -5, 0, -9, -2, -14, -5, -20, -9, -27, -14, -35, -20, -44, -27, -54, -35, -65, -44, -77, -54, -90, -65, -104, -77, -119, -90, -135, -104, -152, -119, -170, -135, -189, -152, -209, -170, -230, -189, -252, -209, -275, -230, -299, -252, -324, -275, -350, -299, -377, -324, -405, -350, -434
Offset: 0

Views

Author

Omar E. Pol, Jul 29 2018

Keywords

Comments

Taking the same formula with k = 0 we have A317300.
Taking the same formula with k = 2 we have A001057 (canonical enumeration of integers).
Taking the same formula with k = 3 we have 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Taking the same formula with k = 4 we have A008794 (squares repeated) except the initial zero.
Taking the same formula with k >= 5 we have the generalized k-gonal numbers (see Crossrefs section).

Crossrefs

Row 1 of A303301.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    /* By definition: */ k:=1; [0] cat [m*i*((k-2)*m*i-k+4)/2: i in [1,-1], m in [1..30]]; // Bruno Berselli, Jul 30 2018
    
  • Mathematica
    Table[(-2 n (n + 1) - 5 (2 n + 1) (-1)^n + 5)/16, {n, 0, 60}] (* Bruno Berselli, Jul 30 2018 *)
  • PARI
    concat(0, Vec(x*(1 - 3*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^50))) \\ Colin Barker, Aug 01 2018

Formula

From Bruno Berselli, Jul 30 2018: (Start)
O.g.f.: x*(1 - 3*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (-5*(1 + 2*x) + (5 - 2*x^2)*exp(2*x))*exp(-x)/16.
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (-2*n*(n + 1) - 5*(2*n + 1)*(-1)^n + 5)/16. Therefore:
a(n) = -n*(n + 6)/8 for even n;
a(n) = -(n - 5)*(n + 1)/8 for odd n. Also:
a(n) = a(n-5) for odd n > 3.
2*(2*n - 1)*a(n) + 2*(2*n + 1)*a(n-1) + n*(n^2 - 3) = 0. (End)

A103260 Number of partitions of 2n prime to 3 with all odd parts occurring with multiplicity 2. The even parts occur with multiplicity 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 6, 8, 10, 10, 12, 16, 22, 28, 32, 36, 42, 52, 66, 80, 92, 104, 120, 144, 174, 206, 236, 266, 304, 356, 420, 488, 554, 624, 708, 816, 946, 1084, 1224, 1372, 1548, 1764, 2016, 2288, 2568, 2868, 3216, 3632, 4110, 4626, 5166, 5748, 6412, 7188
Offset: 0

Views

Author

Noureddine Chair, Feb 15 2005

Keywords

Comments

Convolution of A098884 and A003105. [corrected by Vaclav Kotesovec, Feb 07 2021]
Also equal to the number of overpartitions of n into parts congruent to 1 or 5 modulo 6. - Jeremy Lovejoy, Nov 28 2024

Examples

			E.g. a(7)=8 because 14=10+4=10+2+1+1=8+4+2=8+4+1+1=7+7=5+5+4=5+5+2+1+1.
		

Crossrefs

Programs

  • Maple
    series(product(((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))),k=1..100),x=0,100);
    # alternative program:
    with(gfun): series( add(x^(n*(3*n-2)), n = -6..6)/add((-1)^n*x^(n*(3*n-2)), n = -6..6), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)

Formula

G.f.: (Theta_4(0, x^2)*theta_4(0, x^3))/(theta_4(0, x)*theta_4(0, x^(6))) = Product_{k>0}((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))).
Euler transform of period 12 sequence [2, -1, 0, 0, 2, 0, 2, 0, 0, -1, 2, 0, ...]. - Vladeta Jovovic, Feb 17 2005
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 01 2015
G.f.: f(x,x^5)/f(-x,-x^5) = ( Sum_{n = -oo..oo} x^(n*(3*n-2)) )/( Sum_{n = -oo..oo} (-1)^n*x^(n*(3*n-2)) ), where f(a,b) = Sum_{n = -oo..oo} a^(n*(n+1)/2)*b^(n*(n-1)/2) is Ramanujan's 2-variable theta function. Cf. A080054 and A098151. - Peter Bala, Feb 05 2021

Extensions

Example corrected by Vaclav Kotesovec, Sep 01 2015

A104566 Triangle read by rows: T(i,j) is the (i,j)-entry (1 <= j <= i) of the product H*R of the infinite lower triangular matrices H = [1; 1,2; 1,2,1; 1 2,1,2; ...] and R = [1; 1,1; 1,1,1; 1,1,1,1; ...].

Original entry on oeis.org

1, 3, 2, 4, 3, 1, 6, 5, 3, 2, 7, 6, 4, 3, 1, 9, 8, 6, 5, 3, 2, 10, 9, 7, 6, 4, 3, 1, 12, 11, 9, 8, 6, 5, 3, 2, 13, 12, 10, 9, 7, 6, 4, 3, 1, 15, 14, 12, 11, 9, 8, 6, 5, 3, 2, 16, 15, 13, 12, 10, 9, 7, 6, 4, 3, 1, 18, 17, 15, 14, 12, 11, 9, 8, 6, 5, 3, 2, 19, 18, 16, 15, 13, 12, 10, 9, 7, 6, 4, 3, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 15 2005

Keywords

Examples

			The first few rows are
  1;
  3, 2;
  4, 3, 1;
  6, 5, 3, 2;
  ...
		

Crossrefs

Row sums yield A001082.
Columns 1, 3, 5, ... (starting at the diagonal entry) yield A032766.
Columns 2, 4, 6, ... (starting at the diagonal entry) yield A045506.
Row sums = 1, 5, 8, 16, 21, ... (generalized octagonal numbers, A001082). A006578(2n-1) = A001082(2n).

Programs

  • Maple
    T:=proc(i,j) if j>i then 0 elif i mod 2 = 1 and j mod 2 = 1 then 3*(i-j)/2+1 elif i mod 2 = 0 and j mod 2 = 0 then 3*(i-j)/2+2 elif i+j mod 2 = 1 then 3*(i-j+1)/2 else fi end: for i from 1 to 14 do seq(T(i,j),j=1..i) od; # yields sequence in triangular form # Emeric Deutsch, Mar 24 2005

Formula

For 1 <= j <= i: T(i,j) = 3(i-j+1)/2 if i and j are of opposite parity; T(i,j) = 3(i-j)/2 + 1 if both i and j are odd; T(i,j) = 3(i-j)/2 + 2 if both i and j are even. - Emeric Deutsch, Mar 24 2005

Extensions

More terms from Emeric Deutsch, Mar 24 2005

A132354 Integers m such that 7*m + 1 is a square.

Original entry on oeis.org

0, 5, 9, 24, 32, 57, 69, 104, 120, 165, 185, 240, 264, 329, 357, 432, 464, 549, 585, 680, 720, 825, 869, 984, 1032, 1157, 1209, 1344, 1400, 1545, 1605, 1760, 1824, 1989, 2057, 2232, 2304, 2489, 2565, 2760, 2840, 3045, 3129, 3344, 3432, 3657, 3749, 3984, 4080
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

Numbers of the form m*(7*m + 2) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018

Crossrefs

Programs

Formula

a(2*k) = k*(7*k + 2), a(2*k + 1) = 7*k^2 + 12*k + 5.
a(n) = n^2 + n + 3*ceiling(n/2)^2. - Gary Detlefs, Feb 23 2010
G.f.: -x*(5*x^2 + 4*x + 5)/((x - 1)^3*(x + 1)^2). - Colin Barker, Oct 24 2012
Sum_{n>=1} 1/a(n) = 7/4 - cot(2*Pi/7)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

More terms from Max Alekseyev, Nov 13 2009
Better definition from Max Alekseyev, Oct 24 2012

A185124 Expansion of f(x, -x^5) in powers of x where f(,) is the Ramanujan general theta function.

Original entry on oeis.org

1, 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 20 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is nonzero if and only if n is a number of A001082.
The exponents in the q-series for this sequence are the squares of the numbers of A001651.

Examples

			G.f. = 1 + x - x^5 - x^8 - x^16 - x^21 + x^33 + x^40 + x^56 + x^65 - x^85 + ...
G.f. = q + q^4 - q^16 - q^25 - q^49 - q^64 + q^100 + q^121 + q^169 + q^196 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, -x^6] QPochhammer[ x^5, -x^6] QPochhammer[ -x^6], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
  • PARI
    {a(n) = my(m); if( issquare( 3*n + 1, &m), (m%3!=0) * (-1)^((m+3) \ 6), 0)};

Formula

Euler transform of period 24 sequence [ 1, -1, 0, 0, -1, 1, -1, 0, 0, 0, 1, -2, 1, 0, 0, 0, -1, 1, -1, 0, 0, -1, 1, -1, ...].
G.f.: Sum_{k in Z} (-1)^floor((k + 1)/2) * x^(k * (3*k + 2)).
a(4*n + 2) = a(4*n + 3) = a(5*n + 2) = a(5*n + 4) = a(8*n + 4) = 0. a(4*n + 1) = A080902(n). a(8*n) = A010815(n).
a(n) = (-1)^n * A185125(n). - Michael Somos, Jun 30 2015

A185125 Expansion of f(-x, x^5) in powers of x where f(,) is the Ramanujan general theta function.

Original entry on oeis.org

1, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 20 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is nonzero if and only if n is a number of A001082.
The exponents in the q-series for this sequence are the squares of the numbers of A001651.

Examples

			G.f. = 1 - x + x^5 - x^8 - x^16 + x^21 - x^33 + x^40 + x^56 - x^65 + x^85 + ...
G.f. = q - q^4 + q^16 - q^25 - q^49 + q^64 - q^100 + q^121 + q^169 - q^196 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x^6] QPochhammer[ -x^5, -x^6] QPochhammer[ -x^6], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
  • PARI
    {a(n) = my(m); if( issquare( 3*n + 1, &m), (m%3!=0) * (-1)^((m+3) \ 6 + n), 0)};

Formula

Euler transform of period 24 sequence [ -1, 0, 0, 0, 1, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 1, 0, 0, 0, -1, -1, ...].
G.f.: Sum_{k in Z} (-1)^floor(k/2) * x^(k * (3*k + 2)).
a(4*n + 2) = a(4*n + 3) = a(5*n + 2) = a(5*n + 4) = a(8*n + 4) = 0. a(4*n + 1) = - A080902(n). a(8*n) = A010815(n).
a(n) = (-1)^n * A185124(n). - Michael Somos, Jun 30 2015

A185918 a(n) = 12*n^2 - 2*n - 1.

Original entry on oeis.org

-1, 9, 43, 101, 183, 289, 419, 573, 751, 953, 1179, 1429, 1703, 2001, 2323, 2669, 3039, 3433, 3851, 4293, 4759, 5249, 5763, 6301, 6863, 7449, 8059, 8693, 9351, 10033, 10739, 11469, 12223, 13001, 13803, 14629, 15479, 16353, 17251, 18173, 19119, 20089, 21083, 22101, 23143, 24209
Offset: 0

Views

Author

Paul Curtz, Feb 08 2011

Keywords

Comments

The second quadrisection of A184005(n-1) is A179741(n).
The first quadrisection of A184005(n-1) is a(n).
Sequence found by reading the line from -1, in the direction -1, 9, ..., in the square spiral whose vertices are -1 together with the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

Formula

a(n) = A184005(4*n-1). [corrected by R. J. Mathar, Aug 24 2011]
a(n) = a(n-1) + 24*n - 14.
a(n) = 2*a(n-1) - a(n) + 24.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(1+x)*(13*x-1) / (x-1)^3. - R. J. Mathar, Aug 24 2011
a(n) = A154106(n-1) - 2, n >= 1. - Omar E. Pol, Jul 19 2012
E.g.f.: (12*x^2 + 10*x -1)*exp(x). - G. C. Greubel, Jul 22 2017

Extensions

More terms from Vincenzo Librandi, Feb 09 2011

A245028 Divisors of 11^12 - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 26, 28, 30, 35, 36, 37, 38, 39, 40, 42, 45, 48, 52, 56, 57, 60, 61, 63, 65, 70, 72, 74, 76, 78, 80, 84, 90, 91, 95, 104, 105, 111, 112, 114, 117, 120, 122, 126, 130, 133, 140, 144, 148, 152
Offset: 1

Views

Author

Bruno Berselli, Jul 10 2014

Keywords

Comments

See Comments section in A245027.
The following 36 triangular numbers belong to this sequence: 1, 3, 6, 10, 15, 21, 28, 36, 45, 78, 91, 105, 120, 171, 190, 210, 630, 666, 703, 741, 780, 1596, 1830, 4095, 4560, 5460, 6216, 16653, 33670, 46360, 103740, 115440, 221445, 274170, 365085, 392303547090.
The following terms of A001082 (without 1, 21 and 120, which appear in the previous list) are in sequence: 5, 8, 16, 40, 56, 65, 133, 208, 280, 456, 481, 560, 936, 1008, 1281, 1365, 1680, 1776, 1976, 4880, 5985, 10920, 11285, 44408, 47880, 590520, 658008, 731120, 973560, 1046142792240.
Also, 4/5 of the members are divisible by 3 and 2/3 of them are even.

Examples

			3138428376720 = 2^4 * 3^2 * 5 * 7 * 13 * 19 * 37 * 61 * 1117.
		

Crossrefs

Cf. Divisors of k^12-1: A003524 (k=2); A003532 (k=4); A245027 (k=7), A003543 (k=8), A027902 (k=9), A027897 (k=10).

Programs

  • Magma
    Divisors(11^12-1);
    
  • Mathematica
    Divisors[11^12 - 1]
  • Maxima
    divisors(11^12-1);
  • PARI
    divisors(11^12-1)
    
  • Sage
    divisors(11^12-1)
    
Previous Showing 101-110 of 126 results. Next