cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 126 results. Next

A154105 a(n) = 12*n^2 + 18*n + 7.

Original entry on oeis.org

7, 37, 91, 169, 271, 397, 547, 721, 919, 1141, 1387, 1657, 1951, 2269, 2611, 2977, 3367, 3781, 4219, 4681, 5167, 5677, 6211, 6769, 7351, 7957, 8587, 9241, 9919, 10621, 11347, 12097, 12871, 13669, 14491, 15337, 16207, 17101, 18019, 18961, 19927, 20917, 21931
Offset: 0

Views

Author

Klaus Brockhaus, Jan 04 2009

Keywords

Comments

a(n) is the number of partitions with three integral dissimilar components of the number 12(n+1), e.g for n=0, 12 may be partitioned in the 7 ways (1,2,9), (1,3,8), (1,4,7), (1,5,6), (2,3,7), (2,4,6) and (3,4,5). - Ian Duff, Jan 31 2010
Sequence found by reading the line from 7, in the direction 7, 37, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, May 08 2018

Examples

			a(2) = 12*2^2 + 18*2 + 7 = 91 = 6*14 + 7 = 6*A014106(2) + 7.
a(3) = a(2) + 24*3 + 6 = 91 + 72 + 6 = 169.
a(-4) = 12*4^2 - 18*4 + 7 = 127 = 2*64 - 1 = 2*A085473(3) - 1.
		

Crossrefs

Programs

Formula

G.f.: (7 + 16*x + x^2)/(1-x)^3.
a(n) = 6*A014106(n) + 7.
a(0) = 7; for n > 0, a(n) = a(n-1) + 24*n + 6.
a(-n-1) = 2*A085473(n) - 1. - Bruno Berselli, Sep 05 2011
E.g.f.: (7 + 30*x + 12*x^2)*exp(x). - G. C. Greubel, Sep 02 2016
a(n) = 1 + A152746(n+1). - Omar E. Pol, May 08 2018
a(n) = A003215(n) + 6*A000290(n+1) + 6*A000217(n). - Leo Tavares, Sep 12 2022

A271713 Numbers n such that 3*n - 5 is a square.

Original entry on oeis.org

2, 3, 7, 10, 18, 23, 35, 42, 58, 67, 87, 98, 122, 135, 163, 178, 210, 227, 263, 282, 322, 343, 387, 410, 458, 483, 535, 562, 618, 647, 707, 738, 802, 835, 903, 938, 1010, 1047, 1123, 1162, 1242, 1283, 1367, 1410, 1498, 1543, 1635, 1682, 1778, 1827, 1927, 1978, 2082, 2135, 2243, 2298
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 12 2016

Keywords

Comments

Quasipolynomial of order 2 and degree 2. - Charles R Greathouse IV, Apr 12 2016
From Ray Chandler, Apr 13 2016: (Start)
Square roots of resulting squares gives A001651.
Sequence is the union of A141631 and A271740. (End)

Examples

			a(3) = 7 because 3*7 - 5 = 16 = 4^2.
		

Crossrefs

Cf. numbers n such that 3*n + k is a square: A120328 (k=-6), this sequence (k=-5), A056107 (k=-3), A257083 (k=-2), A033428 (k=0), A001082 (k=1), A080663 (k=3), A271675 (k=4), A100536 (k=6).

Programs

Formula

G.f.: x*(2 + x + x^3 + 2*x^4)/((1 - x)^3*(1 + x)^2). - Ilya Gutkovskiy, Apr 12 2016
a(n) = (3/2)*n^2 + O(n). - Charles R Greathouse IV, Apr 12 2016
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5. - Wesley Ivan Hurt, Apr 13 2016

A154106 a(n) = 12*n^2 + 22*n + 11.

Original entry on oeis.org

11, 45, 103, 185, 291, 421, 575, 753, 955, 1181, 1431, 1705, 2003, 2325, 2671, 3041, 3435, 3853, 4295, 4761, 5251, 5765, 6303, 6865, 7451, 8061, 8695, 9353, 10035, 10741, 11471, 12225, 13003, 13805, 14631, 15481, 16355, 17253, 18175, 19121
Offset: 0

Views

Author

Klaus Brockhaus, Jan 04 2009

Keywords

Comments

Sequence found by reading the line from 11, in the direction 11, 45,..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Examples

			a(3) = 12*3^2 + 22*3 + 11 = 185 = 2*3*29 + 11 = 2*3*A016969(4) + 11.
a(4) = a(3) +24*4 +10 = 185 +96 +10 = 291.
		

Crossrefs

Programs

  • Magma
    [ 12*n^2+22*n+11: n in [0..39] ];
    
  • Mathematica
    Table[12n^2+22n+11,{n,0,50}]  (* Harvey P. Dale, Mar 16 2011 *)
    LinearRecurrence[{3,-3,1},{11,45,103}, 25] (* G. C. Greubel, Sep 02 2016 *)
  • PARI
    a(n)=12*n^2+22*n+11 \\ Charles R Greathouse IV, Oct 16 2015

Formula

G.f.: (1 +x)*(11 +x)/(1-x)^3.
a(n) = 2*n*A016969(n+1) + 11.
a(0) = 11; for n > 0, a(n) = a(n-1) + 24*n + 10.
a(n) = 2 + A185918(n+1). - Omar E. Pol, Jul 18 2012
E.g.f.: (11 + 34*x + 12*x^2)*exp(x). - G. C. Greubel, Sep 02 2016

A158480 a(n) = 12*n^2 + 1.

Original entry on oeis.org

1, 13, 49, 109, 193, 301, 433, 589, 769, 973, 1201, 1453, 1729, 2029, 2353, 2701, 3073, 3469, 3889, 4333, 4801, 5293, 5809, 6349, 6913, 7501, 8113, 8749, 9409, 10093, 10801, 11533, 12289, 13069, 13873, 14701, 15553, 16429, 17329, 18253, 19201, 20173, 21169
Offset: 0

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (12*n^2 + 1)^2 - (36*n^2 + 6)*(2*n)^2 = 1 can be written as a(n)^2 - A158479(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 13, in the direction 13, 49, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Examples

			a(1) = 12*1^2 + 1 = 13.
a(2) = 12*2^2 + 1 = 49.
a(3) = 12*3^2 + 1 = 109.
		

Crossrefs

Programs

  • GAP
    List([1..40], n-> 12*n^2 + 1); # G. C. Greubel, Nov 06 2019
  • Magma
    I:=[13,49,109];[n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]];
    
  • Maple
    seq(12*n^2 +1, n=0..45); # G. C. Greubel, Nov 06 2019
  • Mathematica
    LinearRecurrence[{3,-3,1}, {13,49,109}, 40]
    12*Range[40]^2 +1 (* G. C. Greubel, Nov 06 2019 *)
  • PARI
    a(n)=12*n^2+1
    
  • Sage
    [12*n^2 +1 for n in (1..40)] # G. C. Greubel, Nov 06 2019
    

Formula

a(n) = A010014(n)/2. - Vladimir Joseph Stephan Orlovsky, May 18 2009
G.f: (13*x^2 + 10*x + 1)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 1 + A135453(n). - Omar E. Pol, Jul 18 2012
a(n) = (A016969(n-1)*A016921(n) + 4)/3. - Hilko Koning, Oct 25 2019
E.g.f.: (1 + 12*x + 12*x^2)*exp(x). - G. C. Greubel, Nov 06 2019
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(12))*coth(Pi/sqrt(12)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(12))*csch(Pi/sqrt(12)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(12))*sinh(Pi/sqrt(6)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(12))*csch(Pi/sqrt(12)). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 12 2021

A294655 Expansion of Product_{k>=1} 1/((1 - x^(2*k-1))^(k*(3*k-2))*(1 - x^(2*k))^(k*(3*k+2))).

Original entry on oeis.org

1, 1, 6, 14, 45, 106, 290, 683, 1698, 3918, 9179, 20640, 46444, 101819, 222092, 475886, 1012270, 2124725, 4425195, 9118705, 18648048, 37797126, 76062443, 151889787, 301296200, 593593192, 1162276735, 2261819285, 4376578818, 8421295585, 16118902083, 30694325652, 58164428059
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2017

Keywords

Comments

Euler transform of the generalized octagonal numbers (A001082).

Crossrefs

Programs

  • Mathematica
    nmax = 32; CoefficientList[Series[Product[1/((1 - x^(2 k - 1))^(k (3 k - 2)) (1 - x^(2 k))^(k (3 k + 2))), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (d^2 + d - Ceiling[d/2]^2), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A001082(k+1).
a(n) ~ exp(Pi * 2^(3/2) * n^(3/4) / (3*5^(1/4)) + 3*Zeta(3) * sqrt(5*n) / (2*Pi^2) - (45*Zeta(3)^2 / Pi^5 + Pi/6) * 5^(1/4) * (n^(1/4) / 2^(5/2)) + 225 * Zeta(3)^3 / (4*Pi^8) - Zeta(3) / (32*Pi^2) + 1/8) * Pi^(1/8) / (A^(3/2) * 2^(77/48) * 5^(5/32) * n^(21/32)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 07 2017

A303301 Square array T(n,k) read by antidiagonals upwards in which row n is obtained by taking the general formula for generalized n-gonal numbers: m*((n - 2)*m - n + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and n >= 5. Here n >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, -3, 0, 1, -2, 0, 0, 1, -1, 1, -8, 0, 1, 0, 2, -5, -3, 0, 1, 1, 3, -2, 0, -15, 0, 1, 2, 4, 1, 3, -9, -8, 0, 1, 3, 5, 4, 6, -3, -2, -24, 0, 1, 4, 6, 7, 9, 3, 4, -14, -15, 0, 1, 5, 7, 10, 12, 9, 10, -4, -5, -35, 0, 1, 6, 8, 13, 15, 15, 16, 6, 5, -20, -24, 0, 1, 7, 9, 16, 18, 21, 22, 16, 15, -5, -9, -48
Offset: 0

Views

Author

Omar E. Pol, Jun 08 2018

Keywords

Comments

Note that the formula mentioned in the definition gives several kinds of numbers, for example:
Row 0 and row 1 give A317300 and A317301 respectively.
Row 2 gives A001057 (canonical enumeration of integers).
Row 3 gives 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Row 4 gives A008794 (squares repeated) except the initial zero.
Finally, for n >= 5 row n gives the generalized k-gonal numbers (see Crossrefs section).

Examples

			Array begins:
------------------------------------------------------------------
n\m  Seq. No.    0   1  -1   2  -2   3   -3    4   -4    5   -5
------------------------------------------------------------------
0    A317300:    0,  1, -3,  0, -8, -3, -15,  -8, -24, -15, -35...
1    A317301:    0,  1, -2,  1, -5,  0,  -9,  -2, -14,  -5, -20...
2    A001057:    0,  1, -1,  2, -2,  3,  -3,   4,  -4,   5,  -5...
3   (A008795):   0,  1,  0,  3,  1,  6,   3,  10,   6,  15,  10...
4   (A008794):   0,  1,  1,  4,  4,  9,   9,  16,  16,  25,  25...
5    A001318:    0,  1,  2,  5,  7, 12,  15,  22,  26,  35,  40...
6    A000217:    0,  1,  3,  6, 10, 15,  21,  28,  36,  45,  55...
7    A085787:    0,  1,  4,  7, 13, 18,  27,  34,  46,  55,  70...
8    A001082:    0,  1,  5,  8, 16, 21,  33,  40,  56,  65,  85...
9    A118277:    0,  1,  6,  9, 19, 24,  39,  46,  66,  75, 100...
10   A074377:    0,  1,  7, 10, 22, 27,  45,  52,  76,  85, 115...
11   A195160:    0,  1,  8, 11, 25, 30,  51,  58,  86,  95, 130...
12   A195162:    0,  1,  9, 12, 28, 33,  57,  64,  96, 105, 145...
13   A195313:    0,  1, 10, 13, 31, 36,  63,  70, 106, 115, 160...
14   A195818:    0,  1, 11, 14, 34, 39,  69,  76, 116, 125, 175...
15   A277082:    0,  1, 12, 15, 37, 42,  75,  82, 126, 135, 190...
...
		

Crossrefs

Columns 0..2 are A000004, A000012, A023445.
Column 3 gives A001477 which coincides with the row numbers.
Main diagonal gives A292551.
Row 0-2 gives A317300, A317301, A001057.
Row 3 gives 0 together with A008795.
Row 4 gives A008794.
For n >= 5, rows n gives the generalized n-gonal numbers: A001318 (n=5), A000217 (n=6), A085787 (n=7), A001082 (n=8), A118277 (n=9), A074377 (n=10), A195160 (n=11), A195162 (n=12), A195313 (n=13), A195818 (n=14), A277082 (n=15), A274978 (n=16), A303305 (n=17), A274979 (n=18), A303813 (n=19), A218864 (n=20), A303298 (n=21), A303299 (n=22), A303303 (n=23), A303814 (n=24), A303304 (n=25), A316724 (n=26), A316725 (n=27), A303812 (n=28), A303815 (n=29), A316729 (n=30).
Cf. A317302 (a similar table but with polygonal numbers).

Programs

  • Mathematica
    t[n_, r_] := PolygonalNumber[n, If[OddQ@ r, Floor[(r + 1)/2], -r/2]]; Table[ t[n - r, r], {n, 0, 11}, {r, 0, n}] // Flatten (* also *)
    (* to view the square array *)  Table[ t[n, r], {n, 0, 15}, {r, 0, 10}] // TableForm (* Robert G. Wilson v, Aug 08 2018 *)

Formula

T(n,k) = A194801(n-3,k) if n >= 3.

A153794 4 times octagonal numbers: a(n) = 4*n*(3*n-2).

Original entry on oeis.org

0, 4, 32, 84, 160, 260, 384, 532, 704, 900, 1120, 1364, 1632, 1924, 2240, 2580, 2944, 3332, 3744, 4180, 4640, 5124, 5632, 6164, 6720, 7300, 7904, 8532, 9184, 9860, 10560, 11284, 12032, 12804, 13600, 14420, 15264, 16132, 17024
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2009

Keywords

Comments

Sequence found by reading the segment (0, 4) together with the line from 4, in the direction 4, 32, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

Formula

a(n) = 12*n^2 - 8*n = 4*A000567(n) = 2*A139267(n).
a(n) = 24*n + a(n-1) - 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=4, a(2)=32, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 14 2011
G.f.: 4*(x + 5*x^2)/(1-x)^3. - Harvey P. Dale, Jul 14 2011
E.g.f.: 4*x*(1 + 3*x)*exp(x). - G. C. Greubel, Aug 29 2016

A185212 a(n) = 12*n^2 - 8*n + 1.

Original entry on oeis.org

1, 5, 33, 85, 161, 261, 385, 533, 705, 901, 1121, 1365, 1633, 1925, 2241, 2581, 2945, 3333, 3745, 4181, 4641, 5125, 5633, 6165, 6721, 7301, 7905, 8533, 9185, 9861, 10561, 11285, 12033, 12805, 13601, 14421, 15265, 16133, 17025, 17941, 18881, 19845, 20833
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 20 2012

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 5, and the same line from 5, in the direction 5, 33, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, May 08 2018

Crossrefs

For n > 0: odd terms in A001859.
Cf. A001082.

Programs

  • Haskell
    a185212 = (+ 1) . (* 4) . a000567
    
  • Mathematica
    Table[12n^2-8n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,5,33},50] (* Harvey P. Dale, Jul 07 2015 *)
  • PARI
    a(n)=12*n^2-8*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 4*A000567(n) + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=1, a(1)=5, a(2)=33. - Harvey P. Dale, Jul 07 2015
G.f.: (-1 - 2*x - 21*x^2)/(-1+x)^3. - Harvey P. Dale, Jul 07 2015
E.g.f.: (12*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jun 25 2017
a(n) = A016754(n-1) + 4*A000384(n). - Leo Tavares, May 21 2022
From Amiram Eldar, May 28 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/8 - 3*log(3)/8 + 1.
Sum_{n>=0} (-1)^n/a(n) = Pi/8 - sqrt(3)*arccoth(sqrt(3))/2 + 1. (End)

A194454 a(n) = 12*n^2 + 2*n + 1.

Original entry on oeis.org

1, 15, 53, 115, 201, 311, 445, 603, 785, 991, 1221, 1475, 1753, 2055, 2381, 2731, 3105, 3503, 3925, 4371, 4841, 5335, 5853, 6395, 6961, 7551, 8165, 8803, 9465, 10151, 10861, 11595, 12353, 13135, 13941, 14771, 15625, 16503, 17405, 18331, 19281
Offset: 0

Views

Author

Bruno Berselli, Aug 24 2011

Keywords

Comments

A142241 gives the first differences.
Inverse binomial transform of this sequence: 1, 14, 24, 0, 0 (0 continued).
a(n)*a(n-1)-11 is a square, precisely 4*A051866(n)^2.
Sequence found by reading the line from 1, in the direction 1, 15, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Examples

			Using these numbers we can write:
  1, 15, 53, 115, 201, 311, 445,  603,  785,  991, 1221, ...
  0,  0,  1,  15,  53, 115, 201,  311,  445,  603,  785, ...
  0,  0,  0,   0,   1,  15,  53,  115,  201,  311,  445, ...
  0,  0,  0,   0,   0,   0,   1,   15,   53,  115,  201, ...
  0,  0,  0,   0,   0,   0,   0,    0,    1,   15,   53, ...
  0,  0,  0,   0,   0,   0,   0,    0,    0,    0,    1, ...
  ======================================================
  The sums of the columns give the sequence A172073 (after 0):
  1, 15, 54, 130, 255, 441, 700, 1044, 1485, 2035, 2706, ...
		

Crossrefs

Programs

  • Magma
    [12*n^2+2*n+1: n in [0..40]];
    
  • Mathematica
    Table[12 n^2 + 2 n + 1, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
  • PARI
    for(n=0, 40, print1(12*n^2+2*n+1", "));

Formula

G.f.: (1+x)*(1+11*x)/(1-x)^3.
a(n) = A154106(-n-1).
a(n) = 2*A049453(n) + 1.
a(n) = A051866(n) + A051866(n+1). - Charlie Marion, Nov 15 2019
E.g.f.: exp(x)*(1 + 14*x + 12*x^2). - Stefano Spezia, Nov 15 2019

A270594 Number of ordered ways to write n as the sum of a triangular number, a positive square and the square of a generalized pentagonal number (A001318).

Original entry on oeis.org

1, 2, 1, 2, 4, 2, 2, 4, 2, 3, 5, 2, 2, 3, 3, 4, 3, 2, 4, 5, 1, 2, 5, 1, 3, 7, 3, 2, 6, 5, 3, 6, 2, 2, 5, 4, 6, 4, 3, 5, 8, 2, 2, 6, 2, 5, 5, 1, 4, 9, 5, 3, 8, 5, 4, 8, 4, 3, 5, 5, 5, 6, 3, 6, 11, 2, 3, 9, 2, 5, 12, 2, 2, 9, 6, 3, 4, 4, 5, 6, 6, 6, 5, 5, 6, 11, 2, 4, 8, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 19 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 3, 21, 24, 48, 90, 138, 213, 283, 462, 468, 567, 573, 1998, 2068, 2488, 2687, 5208, 5547, 5638, 6093, 6492, 6548, 6717, 7538, 7731, 8522, 14763, 16222, 17143, 24958, 26148.
(ii) Let T(x) = x(x+1)/2, pen(x) = x(3x+1)/2 and hep(x) = x(5x+3)/2. Then any natural number can be written as P(x,y,z) with x, y and z integers, where P(x,y,z) is either of the following polynomials: T(x)^2+T(y)+z(5z+1)/2, T(x)^2+T(y)+z(3z+j) (j = 1,2), T(x)^2+y^2+pen(z), T(x)^2+pen(y)+hep(z), T(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), T(x)^2+pen(y)+z(4z+j) (j = 1,3), T(x)^2+pen(y)+z(5z+j) (j = 1,3,4), T(x)^2+pen(y)+z(11z+7)/2, T(x)^2+y(5y+1)/2+z(3z+2), T(x)^2+hep(y)+z(3z+2), pen(x)^2+T(y)+pen(z), pen(x)^2+T(y)+2*pen(z), pen(x)^2+T(y)+z(9z+7)/2, pen(x)^2+y^2+pen(z), pen(x)^2+2*T(y)+pen(z), pen(x)^2+pen(y)+3*T(z), pen(x)^2+pen(y)+2z^2, pen(x)^2+pen(y)+2*pen(z), pen(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), pen(x)^2+pen(y)+z(4z+3), pen(x)^2+pen(y)+z(9z+1)/2, pen(x)^2+pen(y)+3*pen(z), pen(x)^2+pen(y)+z(5z+j) (j = 1,2,3,4), pen(x)^2+pen(y)+z(11z+j)/2 (j = 7,9), pen(x)^2+pen(y)+z(7z+1), pen(x)^2+pen(y)+3*hep(z), pen(x)^2+y(5y+j)/2+z(3z+k) (j = 1,3; k = 1,2), pen(x)^2+hep(y)+z(7z+j)/2 (j = 1,3,5), pen(x)^2+hep(y)+z(9z+5)/2, pen(y)^2+2pen(y)+z(3z+2), pen(x)^2+2*pen(y)+3*pen(z), (x(5x+1)/2)^2+2*T(y)+pen(z), (x(5x+1)/2)^2+pen(y)+z(7z+3)/2, (x(5x+1)/2)^2+pen(y)+z(4z+1), (x(5x+1)/2)^2+hep(y)+2*pen(z), hep(x)^2+T(y)+2*pen(z), hep(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), hep(x)^2+pen(y)+z(4z+1), hep(x)^2+pen(y)+z(5z+4), 4*pen(x)^2+T(y)+hep(z), 4*pen(x)^2+T(y)+2*pen(z), 4*pen(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), (x(3x+2))^2+y^2+pen(z), (x(3x+2))^2+pen(y)+z(7z+j)/2 (j = 3,5), 2*T(x)^2+T(y)+z(3z+j) (j = 1,2), 2*T(x)^2+y^2+pen(z), 2*T(x)^2+2*T(y)+pen(z), 2*T(x)^2+pen(y)+z(7z+j)/2 (j = 1,5), 2*T(x)^2+pen(y)+z(5z+1), 2*pen(y)^2+T(y)+z(3z+2), 2*pen(x)^2+y^2+pen(z), 2*pen(x)^2+pen(y)+z(7z+3)/2, 2*pen(x)^2+pen(y)+z(4z+j) (j = 1,3), 2*pen(x)^2+pen(y)+z(5z+4), 2*pen(x)^2+pen(y)+z(7z+1), 2*pen(x)^2+hep(y)+2*pen(z), 2*hep(x)^2+pen(y)+z(7z+5)/2, 3*pen(x)^2+T(y)+z(3z+2), 3*pen(x)^2+y^2+pen(z), 3*pen(x)^2+2*T(y)+pen(z), 3*pen(x)^2+pen(y)+z(7z+j)/2 (j = 1,3,5), 3*pen(x)^2+pen(y)+z(4z+1), 6*pen(x)^2+pen(y)+z(7z+3)/2.
See also A270566 for a similar conjecture involving four powers.
It is known that any positive integer can be written as the sum of a triangular number, a square and an odd square.

Examples

			a(21) = 1 since 21 = 1*2/2 + 4^2 + (1*(3*1+1)/2)^2.
a(24) = 1 since 24 = 5*6/2 + 3^2 + (0*(3*0-1)/2)^2.
a(468) = 1 since 468 = 0*1/2 + 18^2 + (3*(3*3-1)/2)^2.
a(7538) = 1 since 7538 = 64*65/2 + 47^2 + (6*(3*6+1)/2)^2.
a(7731) = 1 since 7731 = 82*83/2 + 62^2 + (4*(3*4-1)/2)^2.
a(8522) = 1 since 8522 = 127*128/2 + 13^2 + (3*(3*3+1)/2)^2.
a(14763) = 1 since 14763 = 164*165/2 + 33^2 + (3*(3*3-1)/2)^2.
a(16222) = 1 since 16222 = 168*169/2 + 45^2 + (1*(3*1-1)/2)^2.
a(17143) = 1 since 17143 = 182*183/2 + 21^2 + (2*(3*2+1)/2)^2.
a(24958) = 1 since 24958 = 216*217/2 + 39^2 + (1*(3*1-1)/2)^2.
a(26148) = 1 since 26148 = 10*11/2 + 142^2 + (7*(3*7+1)/2)^2.
		

Crossrefs

Programs

  • Mathematica
    pQ[n_]:=pQ[n]=IntegerQ[n]&&IntegerQ[Sqrt[24n+1]]
    Do[r=0;Do[If[pQ[Sqrt[n-x^2-y(y+1)/2]],r=r+1],{x,1,Sqrt[n]},{y,0,(Sqrt[8(n-x^2)+1]-1)/2}];Print[n," ",r];Continue,{n,1,90}]
Previous Showing 81-90 of 126 results. Next