cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A029547 Expansion of g.f. 1/(1 - 34*x + x^2).

Original entry on oeis.org

1, 34, 1155, 39236, 1332869, 45278310, 1538129671, 52251130504, 1775000307465, 60297759323306, 2048348816684939, 69583562007964620, 2363792759454112141, 80299370259431848174, 2727814796061228725775, 92665403695822344828176, 3147895910861898495432209
Offset: 0

Views

Author

Keywords

Comments

Chebyshev sequence U(n,17)=S(n,34) with Diophantine property.
b(n)^2 - 2*(12*a(n))^2 = 1 with the companion sequence b(n)=A056771(n+1). - Wolfdieter Lang, Dec 11 2002
More generally, for t(m) = m + sqrt(m^2-1) and u(n) = (t(m)^(n+1) - 1/t(m)^(n+1))/(t(m) - 1/t(m)), we can verify that ((u(n+1) - u(n-1))/2)^2 - (m^2-1)*u(n)^2 = 1. - Bruno Berselli, Nov 21 2011
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,33}. - Milan Janjic, Jan 26 2015

Crossrefs

A091761 is an essentially identical sequence.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).

Programs

  • GAP
    m:=17;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
  • Magma
    I:=[1,34]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Maple
    with (combinat):seq(fibonacci(4*n+4,2)/12, n=0..15); # Zerinvary Lajos, Apr 21 2008
  • Mathematica
    Table[GegenbauerC[n, 1, 17], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    LinearRecurrence[{34,-1},{1,34},20] (* Vincenzo Librandi, Nov 22 2011 *)
    ChebyshevU[Range[21] -1, 17] (* G. C. Greubel, Dec 22 2019 *)
  • PARI
    A029547(n, x=[0,1],A=[17,72*4;1,17]) = vector(n,i,(x*=A)[1]) \\ M. F. Hasler, May 26 2007
    
  • PARI
    vector( 21, n, polchebyshev(n-1, 2, 17) ) \\ G. C. Greubel, Dec 22 2019
    
  • Sage
    [lucas_number1(n,34,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
    
  • Sage
    [chebyshev_U(n,17) for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = 34*a(n-1) - a(n-2), a(-1)=0, a(0)=1.
a(n) = S(n, 34) with S(n, x):= U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310. - Wolfdieter Lang, Dec 11 2002
a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap = 17+12*sqrt(2) and am = 17-12*sqrt(2).
a(n) = Sum_{k = 0..floor(n/2)} (-1)^k*binomial(n-k, k)*34^(n-2*k).
a(n) = sqrt((A056771(n+1)^2 -1)/2)/12.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) with a(-1)=0, a(0)=1, a(1)=34. Also a(n) = (sqrt(2)/48)*((17+12*sqrt(2))^n-(17-12*sqrt(2))^n) = (sqrt(2)/48)*((3+2*sqrt(2))^(2n+2)-(3-2*sqrt(2))^(2n+2)) = (sqrt(2)/48)*((1+sqrt(2))^(4n+4)-(1-sqrt(2))^(4n+4)). - Antonio Alberto Olivares, Mar 19 2008
a(n) = Sum_{k=0..n} A101950(n,k)*33^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 0} (1 + 1/a(n)) = 1/4*(4 + 3*sqrt(2)).
Product {n >= 1} (1 - 1/a(n)) = 2/17*(4 + 3*sqrt(2)). (End)
E.g.f.: exp(17*x)*(24*cosh(12*sqrt(2)*x) + 17*sqrt(2)*sinh(12*sqrt(2)*x))/24. - Stefano Spezia, Apr 16 2023

A004191 Expansion of 1/(1 - 12*x + x^2).

Original entry on oeis.org

1, 12, 143, 1704, 20305, 241956, 2883167, 34356048, 409389409, 4878316860, 58130412911, 692686638072, 8254109243953, 98356624289364, 1172025382228415, 13965947962451616, 166419350167190977, 1983066254043840108, 23630375698358890319, 281581442126262843720
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's polynomials U(n,x) evaluated at x=6.
a(n) give all (nontrivial, integer) solutions of Pell equation b(n)^2 - 35*a(n)^2 = +1 with b(n)=A023038(n+1), n>=0.
For positive n, a(n) equals the permanent of the tridiagonal matrix of order n with 12's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,11}. - Milan Janjic, Jan 26 2015
a(n) = -a(-2-n) for all n in Z. - Michael Somos, Jun 29 2019

Examples

			G.f. = 1 + 12*x + 143*x^2 + 1704*x^3 + 20305*x^4 + 241956*x^5 + ...
		

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), this sequence (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=8;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[1, 12]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jun 13 2012
    
  • Maple
    seq( simplify(ChebyshevU(n, 6)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n, 1, 6], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[1/(1-12*x+x^2), {x,0,30}], x] (* T. D. Noe, Aug 01 2011 *)
    LinearRecurrence[{12,-1},{1,12},30] (* Harvey P. Dale, Feb 17 2016 *)
    a[n_]:= ChebyshevU[n, 6]; (* Michael Somos, Jun 29 2019 *)
  • PARI
    Vec(1/(1-12*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    {a(n) = polchebyshev(n, 2, 6)}; \\ Michael Somos, Jun 29 2019
    
  • Sage
    [lucas_number1(n,12,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n, 6) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = S(n, 12) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310.
a(n) = ((6+sqrt(35))^(n+1) - (6-sqrt(35))^(n+1))/(2*sqrt(35)).
a(n) = sqrt((A023038(n)^2 - 1)/35).
[A077417(n), a(n)] = the 2 X 2 matrix [1,10; 1,11]^(n+1) * [1,0]. - Gary W. Adamson, Mar 19 2008
a(n) = 12*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=12. - Philippe Deléham, Nov 17 2008
a(n) = b such that (-1)^(n+1)*Integral_{x=0..Pi/2} (sin((n+1)*x))/(6+cos(x)) dx = c + b*(log(2)+log(3)-log(7)). - Francesco Daddi, Aug 01 2011
a(n) = Sum_{k=0..n} A101950(n,k)*11^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012 (Start):
Product_{n>=0} (1 + 1/a(n)) = 1/5*(5 + sqrt(35)).
Product_{n>=1} (1 - 1/a(n)) = 1/12*(5 + sqrt(35)). (End)
E.g.f.: exp(6*x)*(35*cosh(sqrt(35)*x) + 6*sqrt(35)*sinh(sqrt(35)*x))/35. - Stefano Spezia, Dec 14 2022

Extensions

Chebyshev comments and a(n) formulas from Wolfdieter Lang, Nov 08 2002

A077421 Chebyshev sequence U(n,11)=S(n,22) with Diophantine property.

Original entry on oeis.org

1, 22, 483, 10604, 232805, 5111106, 112211527, 2463542488, 54085723209, 1187422368110, 26069206375211, 572335117886532, 12565303387128493, 275864339398940314, 6056450163389558415, 132966039255171344816
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

b(n)^2 - 30*(2*a(n))^2 = 1 with the companion sequence b(n)=A077422(n+1).
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 22's along the main diagonal, and i's along the subdiagonal and the superdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,21}. - Milan Janjic, Jan 25 2015

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), this sequence (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=11;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[1, 22]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
    
  • Maple
    seq( simplify(ChebyshevU(n, 11)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n, 1, 11], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[1/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
    ChebyshevU[Range[21] -1, 11] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    vector( 21, n, polchebyshev(n-1, 2, 11) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [lucas_number1(n,22,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n,11) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = 22*a(n-1) - a(n-1), a(-1)=0, a(0)=1.
a(n) = S(n, 22) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap := 11+2*sqrt(30) and am := 11-2*sqrt(30).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*22^(n-2*k).
a(n) = sqrt((A077422(n+1)^2-1)/30)/2.
G.f.: 1/(1-22*x+x^2). - Philippe Deléham, Nov 18 2008
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*21^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/5*(5 + sqrt(30)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/11*(5 + sqrt(30)). - Peter Bala, Dec 23 2012

A070997 a(n) = 8*a(n-1) - a(n-2), a(0)=1, a(-1)=1.

Original entry on oeis.org

1, 7, 55, 433, 3409, 26839, 211303, 1663585, 13097377, 103115431, 811826071, 6391493137, 50320119025, 396169459063, 3119035553479, 24556114968769, 193329884196673, 1522082958604615, 11983333784640247, 94344587318517361
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), May 18 2002

Keywords

Comments

A Pellian sequence.
In general, Sum_{k=0..n} binomial(2n-k,k)j^(n-k) = (-1)^n*U(2n,i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,8), where L is defined as in A108299; see also A057080 for L(n,-8). - Reinhard Zumkeller, Jun 01 2005
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7} which do not end in 0. - Tanya Khovanova, Jan 10 2007
Hankel transform of A158197. - Paul Barry, Mar 13 2009
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(6)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Values of x (or y) in the solutions to x^2 - 8xy + y^2 + 6 = 0. - Colin Barker, Feb 05 2014
From Klaus Purath, May 06 2025: (Start)
Nonnegative solutions to the Diophantine equation 3*b(n)^2 - 5*a(n)^2 = -2. The corresponding b(n) are A057080(n). Note that (b(n)*b(n+2) - b(n+1)^2)/2 = -5 and (a(n)*a(n+2) - a(n+1)^2)/2 = 3.
(a(n) + b(n))/2 = (b(n+1) - a(n+1))/2 = A001090(n+1) = Lucas U(8,1). Also b(n)*a(n+1) - b(n+1)*a(n) = -2.
a(n)=(t(i+2*n+1) + t(i))/(t(i+n+1) + t(i+n)) as long as t(i+n+1) + t(i+n) != 0 for any integer i and n >= 1 where (t) is a sequence satisfying t(i+3) = 7*t(i+2) - 7*t(i+1) + t(i) or t(i+2) = 8*t(i+1) - t(i) regardless of initial values and including this sequence itself. (End)

Examples

			1 + 7*x + 55*x^2 + 433*x^3 + 3409*x^4 + 26839*x^5 + ...
		

Crossrefs

a(n) = sqrt((3*A057080(n)^2+2)/5) (cf. Richardson comment).
Row 8 of array A094954.
Cf. A001090.
Cf. similar sequences listed in A238379.
Cf. A041023.

Programs

  • Magma
    I:=[1, 7]; [n le 2 select I[n] else 8*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 26 2013
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 8*x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 26 2013 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
       ] (* Complement of A041023 *)
    a[15, 20] (* Gerry Martens, Jun 07 2015 *)
    LinearRecurrence[{8,-1},{1,7},20] (* Harvey P. Dale, Dec 04 2021 *)
  • PARI
    {a(n) = subst( 9*poltchebi(n) - poltchebi(n-1), x, 4) / 5} /* Michael Somos, Jun 07 2005 */
    
  • PARI
    {a(n) = if( n<0, n=-1-n); polcoeff( (1 - x) / (1 - 8*x + x^2) + x * O(x^n), n)} /* Michael Somos, Jun 07 2005 */
    
  • Sage
    [lucas_number1(n,8,1)-lucas_number1(n-1,8,1) for n in range(1, 21)] # Zerinvary Lajos, Nov 10 2009
    

Formula

For all members x of the sequence, 15*x^2 - 6 is a square. Lim_{n->infinity} a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 12 2002
a(n) = (5+sqrt(15))/10 * (4+sqrt(15))^n + (5-sqrt(15))/10 * (4-sqrt(15))^n.
a(n) ~ 1/10*sqrt(10)*(1/2*(sqrt(10)+sqrt(6)))^(2*n+1)
a(n) = U(n, 4)-U(n-1, 4) = T(2*n+1, sqrt(5/2))/sqrt(5/2), with Chebyshev's U and T polynomials and U(-1, x) := 0. U(n, 4)=A001090(n+1), n>=-1.
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 6) = a(n) - Benoit Cloitre, Nov 10 2002
a(n)*a(n+3) = 48 + a(n+1)a(n+2). - Ralf Stephan, May 29 2004
a(n) = (-1)^n*U(2n, i*sqrt(6)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005
G.f.: (1-x)/(1-8*x+x^2).
a(n) = a(-1-n).
a(n) = Jacobi_P(n,-1/2,1/2,4)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006
[a(n), A001090(n+1)] = [1,6; 1,7]^(n+1) * [1,0]. - Gary W. Adamson, Mar 21 2008
For n>0, a(n) is the numerator of the continued fraction [2,3,2,3,...,2,3] with n repetitions of 2,3. For the denominators see A136325. - Greg Dresden, Sep 12 2019
From Peter Bala, Apr 30 2025: (Start)
a(n) = (1/sqrt(5)) * sqrt(1 - T(2*n+1, -4)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
a(n) divides a(3*n+1); a(n) divides a(5*n+2); in general, for k >= 0, a(n) divides a((2*k+1)*n + k).
The aerated sequence [b(n)]n>=1 = [1, 0, 7, 0, 55, 0, 433, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -10, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1/6 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A291033(n-1) - 1/A291033(n).) (End)
In addition to the first formula above: In general, the following applies to all recurrences (a(n)) of the form (8,-1) with a(0) = 1 and arbitrary a(1): 15*a(n)^2 + y = b^2 where y = x^2 + 8*x + 1 and x = a(1) - 8. Also y = a(k+1)^2 - a(k)*a(k+1) for any k >=0. - Klaus Purath, May 06 2025

A078987 Chebyshev U(n,x) polynomial evaluated at x=19.

Original entry on oeis.org

1, 38, 1443, 54796, 2080805, 79015794, 3000519367, 113940720152, 4326746846409, 164302439443390, 6239165952002411, 236924003736648228, 8996872976040630253, 341644249085807301386, 12973484592284636822415, 492650770257730391950384, 18707755785201470257292177
Offset: 0

Views

Author

Wolfdieter Lang, Jan 10 2003

Keywords

Comments

A078986(n+1)^2 - 10*(6*a(n))^2 = +1, n>=0 (Pell equation +1, see A033313 and A033317).
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,37}. - Milan Janjic, Jan 26 2015

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), this sequence (m=19), A097316 (m=33).

Programs

  • GAP
    m:=19;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
  • Magma
    m:=19; I:=[1, 2*m]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 22 2019
    
  • Maple
    seq( simplify(ChebyshevU(n, 19)), n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    lst={};Do[AppendTo[lst, GegenbauerC[n, 1, 19]], {n, 0, 8^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    ChebyshevU[Range[21] -1, 19] (* G. C. Greubel, Dec 22 2019 *)
  • PARI
    a(n)=subst(polchebyshev(n,2),x,19) \\ Charles R Greathouse IV, Feb 10 2012
    
  • PARI
    Vec(1/(1-38*x+x^2) + O(x^50)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    [lucas_number1(n,38,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
    
  • Sage
    [chebyshev_U(n,19) for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = 38*a(n-1) - a(n-2), n>=1, a(-1)=0, a(0)=1.
a(n) = S(n, 38) with S(n, x) = U(n, x/2), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-38*x+x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*38^(n-2*k).
a(n) = ((19+6*sqrt(10))^(n+1) - (19-6*sqrt(10))^(n+1))/(12*sqrt(10)).
a(n) = Sum_{k=0..n} A101950(n,k)*37^k. - Philippe Deléham, Feb 10 2012
Product_{n>=0} (1 + 1/a(n)) = 1/3*(3 + sqrt(10)). - Peter Bala, Dec 23 2012
Product_{n>=1} (1 - 1/a(n)) = 3/19*(3 + sqrt(10)). - Peter Bala, Dec 23 2012
From Andrea Pinos, Jan 02 2023: (Start)
a(n) = (A097314(n+1) - A097315(n+1))/2.
a(n) = (A097314(n) + A097315(n))/2. (End)

A075843 Numbers k such that 99*k^2 + 1 is a square.

Original entry on oeis.org

0, 1, 20, 399, 7960, 158801, 3168060, 63202399, 1260879920, 25154396001, 501827040100, 10011386405999, 199725901079880, 3984506635191601, 79490406802752140, 1585823629419851199, 31636982181594271840
Offset: 0

Views

Author

Gregory V. Richardson, Oct 14 2002

Keywords

Comments

From Wolfdieter Lang, Nov 08 2002: (Start)
Chebyshev's polynomials U(n,x) evaluated at x=10.
The a(n) give all (unsigned, integer) solutions of Pell equation b(n)^2 - 99*a(n)^2 = +1 with b(n)= A001085(n). (End)
For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 20's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imagianry unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,19}. - Milan Janjic, Jan 25 2015

References

  • A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Cf. A001084.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), this sequence (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=10;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 20*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
    
  • Maple
    seq( simplify(ChebyshevU(n-1, 10)), n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    Table[GegenbauerC[n-1, 1, 10], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[x/(1-20x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
    ChebyshevU[Range[22] -2, 10] (* G. C. Greubel, Dec 22 2019 *)
    LinearRecurrence[{20,-1},{0,1},20] (* Harvey P. Dale, Dec 03 2023 *)
  • PARI
    vector( 22, n, polchebyshev(n-2, 2, 10) ) \\ G. C. Greubel, Dec 22 2019
    
  • Sage
    [lucas_number1(n,20,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n-1,10) for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = ((10+3*sqrt(11))^n - (10-3*sqrt(11))^n) / (6*sqrt(11)).
a(n) = 20*a(n-1) - a(n-2), n>=1, a(0)=0, a(1)=1.
a(n) = S(n-1, 20), with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
G.f.: x/(1 - 20*x + x^2).
a(n) = sqrt((A001085(n)^2 - 1)/99).
Lim_{n->inf.} a(n)/a(n-1) = 10 + 3*sqrt(11).
a(n+1) = Sum_{k=0..n} A101950(n,k)*19^k. - Philippe Deléham, Feb 10 2012
Product_{n>=1} (1 + 1/a(n)) = 1/3*(3 + sqrt(11)). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = 3/20*(3 + sqrt(11)). - Peter Bala, Dec 23 2012

A001091 a(n) = 8*a(n-1) - a(n-2); a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 31, 244, 1921, 15124, 119071, 937444, 7380481, 58106404, 457470751, 3601659604, 28355806081, 223244789044, 1757602506271, 13837575261124, 108942999582721, 857706421400644, 6752708371622431, 53163960551578804
Offset: 0

Views

Author

Keywords

Comments

a(15+30k)-1 and a(15+30k)+1 are consecutive odd powerful numbers. The first pair is 13837575261124 +- 1. See A076445. - T. D. Noe, May 04 2006
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 15*y^2 = 1. The corresponding y values are in A001090. - Vincenzo Librandi, Nov 12 2010 [edited by Jon E. Schoenfield, May 04 2014]
The square root of 15*(n^2-1) at those numbers = 5 * A136325. - Richard R. Forberg, Nov 22 2013
For the above Diophantine equation x^2-15*y^2=1, x + y = A105426. - Richard R. Forberg, Nov 22 2013
a(n) solves for x in the Diophantine equation floor(3*x^2/5)= y^2. The corresponding y solutions are provided by A136325(n). x + y = A070997(n). - Richard R. Forberg, Nov 22 2013
Except for the first term, values of x (or y) in the solutions to x^2 - 8xy + y^2 + 15 = 0. - Colin Barker, Feb 05 2014

References

  • Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001090, A090965, A098269, A322836 (column 4).

Programs

  • GAP
    a:=[1,4];; for n in [3..20] do a[n]:=8*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1-4*x)/(1-8*x+x^2) )); // G. C. Greubel, Aug 26 2019
    
  • Mathematica
    LinearRecurrence[{8,-1},{1,4},20] (* Harvey P. Dale, May 01 2014 *)
  • PARI
    a(n)=subst(poltchebi(n),x,4)
    
  • PARI
    a(n)=n=abs(n); polcoeff((1-4*x)/(1-8*x+x^2)+x*O(x^n),n) /* Michael Somos, Jun 07 2005 */
    
  • Sage
    def A001091_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-4*x)/(1-8*x+x^2) ).list()
    A001091_list(20) # G. C. Greubel, Aug 26 2019
    

Formula

G.f.: A(x) = (1-4*x)/(1-8*x+x^2). - Simon Plouffe in his 1992 dissertation
For all elements x of the sequence, 15*(x^2 -1) is a square. Limit_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 11 2002
a(n) = sqrt(15*((A001090(n))^2)+1).
a(n) = ((4+sqrt(15))^n + (4-sqrt(15))^n)/2.
a(n) = 4*S(n-1, 8) - S(n-2, 8) = (S(n, 8) - S(n-2, 8))/2, n>=1; S(n, x) := U(n, x/2) with Chebyshev's polynomials of the 2nd kind, A049310, with S(-1, x) := 0 and S(-2, x) := -1.
a(n) = T(n, 4) with Chebyshev's polynomials of the first kind; see A053120.
a(n)=a(-n). - Ralf Stephan, Jun 06 2005
a(n)*a(n+3) - a(n+1)*a(n+2) = 120. - Ralf Stephan, Jun 06 2005
From Peter Bala, Feb 19 2022: (Start)
a(n) = Sum_{k = 0..floor(n/2)} 4^(n-2*k)*15^k*binomial(n,2*k).
a(n) = [x^n] (4*x + sqrt(1 + 15*x^2))^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 16*x + 4*x^2) is the g.f. of A098269.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k. (End)
From Peter Bala, Aug 17 2022: (Start)
Sum_{n >= 1} 1/(a(n) - (5/2)/a(n)) = 1/3.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + (3/2)/a(n)) = 1/5.
Sum_{n >= 1} 1/(a(n)^2 - 5/2) = 1/3 - 1/sqrt(15). (End)
a(n) = A001090(n+1)-4*A001090(n). - R. J. Mathar, Dec 12 2023

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Aug 25 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A057080 Even-indexed Chebyshev U-polynomials evaluated at sqrt(10)/2.

Original entry on oeis.org

1, 9, 71, 559, 4401, 34649, 272791, 2147679, 16908641, 133121449, 1048062951, 8251382159, 64962994321, 511452572409, 4026657584951, 31701808107199, 249587807272641, 1965000650073929, 15470417393318791, 121798338496476399
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

a(n) = L(n,-8)*(-1)^n, where L is defined as in A108299; see also A070997 for L(n,+8). - Reinhard Zumkeller, Jun 01 2005
General recurrence is a(n)=(a(1)-1)*a(n-1)-a(n-2), a(1)>=4, lim n->infinity a(n)= x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
The primes in this sequence are 71, 34649, 16908641, 8251382159, 31701808107199,... - Ctibor O. Zizka, Sep 02 2008
The aerated sequence (b(n))n>=1 = [1, 0, 9, 0, 71, 0, 559, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -6, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015
From Klaus Purath, May 06 2025: (Start)
Nonnegative solutions to the Diophantine equation 3*a(n)^2 - 5*b(n)^2 = -2. The corresponding b(n) are A070997(n). Note that (a(n)*a(n+2) - a(n+1)^2)/2 = -5 and (b(n)*b(n+2) - b(n+1)^2)/2 = 3.
(a(n) + b(n))/2 = (a(n+1) - b(n+1))/2 = A001090(n+1) = Lucas U(8,1). Also a(n)*b(n+1) - a(n+1)*b(n) = -2.
a(n) = (t(i+2n+1) - t(i))/(t(i+n+1) - t(i+n)) as long as t(i+n+1) - t(i+n) != 0 for integer i and n >= 0 where (t) is a sequence satisfying t(i+3) = 9*t(i+2) - 9*t(i+1) + t(i) or t(i+2) = 8*t(i+1) - t(i), regardless of the initial values and including this sequence itself. (End)

Crossrefs

Programs

  • GAP
    a:=[1,9];; for n in [3..30] do a[n]:=8*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
  • Magma
    I:=[1,9]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
    
  • Maple
    A057080 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,9]);
        else
            8*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    CoefficientList[Series[(1+x)/(1-8x+x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 22 2015 *)
  • PARI
    Vec((1+x)/(1-8*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015
    
  • Sage
    [(lucas_number2(n,8,1)-lucas_number2(n-1,8,1))/6 for n in range(1, 21)] # Zerinvary Lajos, Nov 10 2009
    

Formula

For all elements x of the sequence, 15*x^2 + 10 is a square. Lim. n-> Inf. a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 13 2002
a(n) = 8*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = S(n, 8) + S(n-1, 8) = S(2*n, sqrt(10)) with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 8) = A001090(n).
G.f.: (1+x)/(1-8*x+x^2).
a(n) = ( ((4+sqrt(15))^(n+1) - (4-sqrt(15))^(n+1)) + ((4+sqrt(15))^n - (4-sqrt(15))^n) )/(2*sqrt(15)). - Gregory V. Richardson, Oct 13 2002
a(n) = sqrt((5*A070997(n)^2 - 2)/3) (cf. Richardson comment).
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i) then a(n) = (-1)^n*q(n,-10). - Benoit Cloitre, Nov 10 2002
a(n) = Jacobi_P(n,1/2,-1/2,4)/Jacobi_P(n,-1/2,1/2,1); - Paul Barry, Feb 03 2006
a(n+1) = 4*a(n) + sqrt(5*(3*a(n)^2 + 2)). - Richard Choulet, Aug 30 2007
In addition to the first formula above: In general, the following applies to all recurrences (a(n)) of the form (8,-1) with a(0) = 1 and arbritrary a(1): 15*a(n)^2 + y = b^2 where y = x^2 + 8*x + 1 and x = a(1) - 8. Also y = a(k+1)^2 - a(k)*a(k+1) for any k >=0. - Klaus Purath, May 06 2025
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 4), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n)^2 - 8*a(n)*a(n+1) + a(n+1)^2 = 10.
More generally, for arbitrary x, a(n+x)^2 - 8*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 10 with a(n) := ( ((4+sqrt(15))^(n+1) - (4-sqrt(15))^(n+1)) + ((4+sqrt(15))^n - (4-sqrt(15))^n) )/(2*sqrt(15)) as given above.
a(n+1/2) = sqrt(10) * A001090(n+1).
a(n+3/4) + a(n+1/4) = sqrt(10)*sqrt(sqrt(10) + 2) * A001090(n+1).
a(n+3/4) - a(n+1/4) = sqrt((sqrt(40) - 4)/3) * A001091(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/10 (telescoping series: for n >= 1, 10/(a(n) - 1/a(n)) = 1/A001090(n) + 1/A001090(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(5/3) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 5/3 * (1 - 2/(1 + A001091(k+1)))). (End)

A144128 Chebyshev U(n,x) polynomial evaluated at x=18.

Original entry on oeis.org

1, 36, 1295, 46584, 1675729, 60279660, 2168392031, 78001833456, 2805897612385, 100934312212404, 3630829342034159, 130608922001017320, 4698290362694589361, 169007844135004199676, 6079584098497456598975
Offset: 1

Views

Author

Keywords

Comments

From Bruno Berselli, Nov 21 2011: (Start)
A Diophantine property of these numbers: ((a(n+1)-a(n-1))/2)^2 - 323*a(n)^2 = 1.
More generally, for t(m) = m + sqrt(m^2-1) and u(n) = (t(m)^n - 1/t(m)^n)/(t(m) - 1/t(m)), we can verify that ((u(n+1) - u(n-1))/2)^2 - (m^2-1)*u(n)^2 = 1. (End)
a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,35}. - Milan Janjic, Jan 26 2015

Crossrefs

Cf. A200441, A200442, A200724 (incomplete list).
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), this sequence (m=18), A078987 (m=19), A097316 (m=33).

Programs

  • GAP
    a:=[1,36];; for n in [3..20] do a[n]:=36*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Feb 09 2018
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-323); S:=[((18+r)^n-1/(18+r)^n)/(2*r): n in [1..15]]; [Integers()!S[j]: j in [1..#S]]; // Bruno Berselli, Nov 21 2011
    
  • Magma
    I:=[1,36]; [n le 2 select I[n] else 36*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Maple
    seq( simplify(ChebyshevU(n, 18)), n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    LinearRecurrence[{36,-1},{1,36},20] (* Vincenzo Librandi, Nov 22 2011 *)
    GegenbauerC[Range[0,20],1,18] (* Harvey P. Dale, May 19 2019 *)
    ChebyshevU[Range[21] -1, 18] (* G. C. Greubel, Dec 22 2019 *)
  • Maxima
    makelist(sum((-1)^k*binomial(n-1-k,k)*36^(n-1-2*k),k,0,floor(n/2)),n,1,15); /* Bruno Berselli, Nov 21 2011 */
    
  • PARI
    Vec(x/(1-36*x+x^2)+O(x^16)) \\ Bruno Berselli, Nov 21 2011
    
  • PARI
    a(n) = polchebyshev(n, 2, 18); \\ Michel Marcus, Feb 09 2018
    
  • Sage
    [lucas_number1(n,36,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
    

Formula

From Bruno Berselli, Nov 21 2011: (Start)
G.f.: x/(1-36*+x^2).
a(n) = 36*a(n-1) - a(n-2) with a(1)=1, a(2)=36.
a(n) = (t^n - 1/t^n)/(t - 1/t) for t = 18+sqrt(323).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-1-k, k)*36^(n-1-2*k). (End)
a(n) = Sum_{k=0..n} A101950(n,k)*35^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/17*(17 + sqrt(323)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/36*(17 + sqrt(323)). - Peter Bala, Dec 23 2012

Extensions

As Michel Marcus points out, some parts of this entry assume the offset is 1, others parts assume the offset is 0. The whole entry needs careful editing. - N. J. A. Sloane, Feb 10 2018

A029548 Expansion of 1/(1 - 32*x + x^2).

Original entry on oeis.org

1, 32, 1023, 32704, 1045505, 33423456, 1068505087, 34158739328, 1092011153409, 34910198169760, 1116034330278911, 35678188370755392, 1140585993533893633, 36463073604713840864, 1165677769357309014015
Offset: 0

Views

Author

Keywords

Comments

From Bruno Berselli, Nov 21 2011: (Start)
A Diophantine property of these numbers: ((a(n+1) - a(n-1))/2)^2 - 255*a(n)^2 = 1.
More generally, for t(m) = m + sqrt(m^2-1) and u(n) = (t(m)^(n+1) - 1/t(m)^(n+1))/(t(m) - 1/t(m)), we can verify that ((u(n+1) - u(n-1))/2)^2 - (m^2-1)*u(n)^2 = 1. (End)
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,31}. - Milan Janjic, Jan 26 2015

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), this sequence (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33), A097725 (m=51).

Programs

  • GAP
    m:=17;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
  • Magma
    I:=[1, 32]; [n le 2 select I[n] else 32*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
    
  • Maple
    seq(simplify(ChebyshevU(n, 16)), n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    Table[GegenbauerC[n, 1, 16], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[1/(1-32x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
    ChebyshevU[Range[0,20], 16] (* G. C. Greubel, Dec 22 2019 *)
  • PARI
    vector( 21, n, polchebyshev(n-1, 2, 17) ) \\ G. C. Greubel, Dec 22 2019
    
  • Sage
    [lucas_number1(n,32,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
    
  • Sage
    [chebyshev_U(n,16) for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = 32*a(n-1) - a(n-2), a(-1)=0, a(0)=1.
a(n) = S(n, 32) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310. - Wolfdieter Lang, Nov 29 2002
a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap=16+sqrt(255) and am=16-sqrt(255).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*32^(n-2*k).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*31^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/15*(15 + sqrt(255)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/32*(15 + sqrt(255)). - Peter Bala, Dec 23 2012
Previous Showing 11-20 of 53 results. Next