cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 235 results. Next

A368522 Triangular array T, read by rows: T(n,k) = number of sums |x-y| + |y-z| - |x-z| = 2n-2-k, where x,y,z are in {1,2,...,n}.

Original entry on oeis.org

1, 2, 6, 2, 8, 17, 2, 8, 18, 36, 2, 8, 18, 32, 65, 2, 8, 18, 32, 50, 106, 2, 8, 18, 32, 50, 72, 161, 2, 8, 18, 32, 50, 72, 98, 232, 2, 8, 18, 32, 50, 72, 98, 128, 321, 2, 8, 18, 32, 50, 72, 98, 128, 162, 430, 2, 8, 18, 32, 50, 72, 98, 128, 162, 200, 561, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 25 2024

Keywords

Comments

The rows are the reversals of the rows in A368521.

Examples

			First eight rows:
   1
   2   6
   2   8   17
   2   8   18   36
   2   8   18   32   65
   2   8   18   32   50   106
   2   8   18   32   50    72   161
   2   8   18   32   50    72    98    232
For n=2, there are 8 triples (x,y,z):
  111:  |x-y| + |y-z| - |x-z| = 0
  112:  |x-y| + |y-z| - |x-z| = 0
  121:  |x-y| + |y-z| - |x-z| = 2
  122:  |x-y| + |y-z| - |x-z| = 0
  211:  |x-y| + |y-z| - |x-z| = 0
  212:  |x-y| + |y-z| - |x-z| = 2
  221:  |x-y| + |y-z| - |x-z| = 0
  222:  |x-y| + |y-z| - |x-z| = 0
so row 2 of the array is (2,6), representing two 2s and six 0s.
		

Crossrefs

Cf. A084990 (column 1), A000578 (row sums), A001105 (limiting row), A368521.

Programs

  • Mathematica
    t[n_] := t[n] = Tuples[Range[n], 3]
    a[n_, k_] := Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]]
     - Abs[#[[1]] - #[[3]]] ==  2n-2-k &]
    u = Table[Length[a[n, k]], {n, 1, 15}, {k, 0, 2 n - 2, 2}]
    v = Flatten[u] (* sequence *)
    Column[Table[Length[a[n, k]], {n, 1, 15}, {k, 0, 2 n - 2, 2}]]  (* array *)

A141046 a(n) = 4*n^4.

Original entry on oeis.org

0, 4, 64, 324, 1024, 2500, 5184, 9604, 16384, 26244, 40000, 58564, 82944, 114244, 153664, 202500, 262144, 334084, 419904, 521284, 640000, 777924, 937024, 1119364, 1327104, 1562500, 1827904, 2125764, 2458624, 2829124, 3240000, 3694084, 4194304, 4743684, 5345344
Offset: 0

Views

Author

Fredrik Johansson, Jul 31 2008

Keywords

Comments

Nonnegative integers a(n) such that (-a(n))^(1/4) is a Gaussian integer, since (n + n*i)^4 = -4*n^4
For n > 1, a(n) + k^4 is not prime for any k. - Derek Orr, May 31 2014
Suppose the vertices of a triangle are (T(n), T(n+j)), (T(n+2*j), T(n+3*j)) and (T(n+4*j), T(n+5*j)) where T(n) is the n-th triangular number. Then the area of this triangle will be a(j). - Charlie Marion, Mar 06 2021

Crossrefs

Programs

Formula

a(n) = 4*n^4.
a(n) = A008586(A000583(n)) = A000290(A005843(A000290(n))). - Reinhard Zumkeller, Jan 25 2012
G.f.: 4*x*(1 + x)*(1 + 10*x + x^2)/(1 - x)^5. - Chai Wah Wu, Jun 22 2016
From G. C. Greubel, Jun 22 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: 4*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). (End)
a(n) = A001105(n)^2. - Bruce J. Nicholson, Apr 03 2017
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^4/360.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/2880.
Product_{n>=1} (1 + 1/a(n)) = 2*cosh(Pi/2)^2/Pi^2.
Product_{n>=1} (1 - 1/a(n)) = 2*sin(Pi/sqrt(2))*sinh(Pi/sqrt(2))/Pi^2. (End)

A195321 a(n) = 18*n^2.

Original entry on oeis.org

0, 18, 72, 162, 288, 450, 648, 882, 1152, 1458, 1800, 2178, 2592, 3042, 3528, 4050, 4608, 5202, 5832, 6498, 7200, 7938, 8712, 9522, 10368, 11250, 12168, 13122, 14112, 15138, 16200, 17298, 18432, 19602, 20808, 22050, 23328, 24642, 25992, 27378, 28800, 30258, 31752
Offset: 0

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 18, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Semi-axis opposite to A195316 in the same spiral.
Area of a square with diagonal 6n. - Wesley Ivan Hurt, Jun 19 2014
Number of identical tessellation tiles that are composed of 48 equilateral edge joined triangles that can be formed into a order n hexagon. The example tiles shown in the link below are tessellated with eight sphinx tiles. See A291582. - Craig Knecht, Sep 02 2017

Crossrefs

Programs

Formula

a(n) = 18*A000290(n) = 9*A001105(n) = 6*A033428(n) = 3*A033581(n) = 2*A016766(n).
G.f.: 18*x*(1+x)/(1-x)^3. - Wesley Ivan Hurt, Jun 20 2014
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 18*x*(1 + x)*exp(x).
a(n) = n*A008600(n) = A195147(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A195322 a(n) = 20*n^2.

Original entry on oeis.org

0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280
Offset: 0

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 20, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Semiaxis opposite to A195317 in the same spiral.
a(n) is the sum of all the integers less than 10*n which are not multiple of 2 or 5. a(2) = (1 + 3 + 7 + 9) + (11 + 13 + 17 + 19) = 20 + 60 = 80 = 20 * 2^2. (Link Crux Mathematicorum). - Bernard Schott, May 15 2017
Number of terms less than 10^k (k=0, 1, 2, ...): 1, 1, 3, 8, 23, 71, 224, 708, 2237, 7072, 22361, 70711, ... - Muniru A Asiru, Feb 01 2018

Examples

			From _Muniru A Asiru_, Feb 01 2018: (Start)
n=0, a(0) = 20*0^2 = 0.
n=1, a(1) = 20*1^2 = 20.
n=1, a(2) = 20*2^2 = 80.
n=1, a(3) = 20*3^2 = 180.
n=1, a(4) = 20*4^2 = 320.
...
(End)
		

Crossrefs

Programs

Formula

a(n) = 20*A000290(n) = 10*A001105(n) = 5*A016742(n) = 4*A033429(n) = 2*A033583(n).
a(0)=0, a(1)=20, a(2)=80; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 18 2013
a(n) = A010014(n) - A005899(n) for n > 0. - R. J. Cano, Sep 29 2015
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 20*x*(1 + x)/(1-x)^3.
E.g.f.: 20*x*(1 + x)*exp(x).
a(n) = n*A008602(n) = A195148(2*n). (End)

A247375 Numbers m such that floor(m/2) is a square.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 18, 19, 32, 33, 50, 51, 72, 73, 98, 99, 128, 129, 162, 163, 200, 201, 242, 243, 288, 289, 338, 339, 392, 393, 450, 451, 512, 513, 578, 579, 648, 649, 722, 723, 800, 801, 882, 883, 968, 969, 1058, 1059, 1152, 1153, 1250, 1251, 1352, 1353
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2014

Keywords

Comments

Union of A001105 and A058331.
Squares of the sequence are listed in A055792.

Crossrefs

Cf. A130404 (numbers m such that floor(m/2) is a triangular number).

Programs

  • Magma
    [n: n in [0..1400] | IsSquare(Floor(n div 2))];
    
  • Mathematica
    Select[Range[0, 1400], IntegerQ[Sqrt[Floor[#/2]]] &]
    LinearRecurrence[{1,2,-2,-1,1},{0,1,2,3,8},70] (* Harvey P. Dale, Oct 21 2021 *)
  • Sage
    [n for n in [0..1400] if is_square(floor(n/2))]

Formula

G.f.: x*( 1 + x - x^2 + 3*x^3 ) / ( (1 - x)^3*(1 + x)^2 ).
a(n) = 1 + ( 2*n*(n-1) + (2*n-3)*(-1)^n - 1 )/4.
a(n+1) = 1 + A213037(n).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n >= 5. - Wesley Ivan Hurt, Dec 18 2020
Sum_{n>=1} 1/a(n) = Pi^2/12 + coth(Pi/sqrt(2))*Pi/(2*sqrt(2)) + 1/2. - Amiram Eldar, Sep 24 2022

A277701 Positions of ones in A264977; positions of twos in A277330.

Original entry on oeis.org

1, 5, 13, 29, 41, 61, 85, 125, 173, 209, 253, 281, 313, 349, 421, 509, 565, 629, 701, 845, 929, 1021, 1133, 1261, 1405, 1693, 1861, 2045, 2269, 2525, 2665, 2813, 3121, 3313, 3389, 3725, 3905, 4093, 4541, 4841, 5053, 5209, 5257, 5333, 5629, 5993, 6245, 6629, 6781, 7453, 7813, 8189, 8537, 9085, 9593, 9685, 9905, 10109, 10421, 10517, 10669, 10921
Offset: 1

Views

Author

Antti Karttunen, Oct 27 2016

Keywords

Comments

Positions in A260443 of terms that are twice square (terms in A001105, although not all of them are present in A260443).

Crossrefs

Row 1 of A277710.
Cf. also A277712, A277713.

Formula

A277712(n) = 2*a(n) for all n >= 1.

A329604 Numbers k such that A156552(k) == 1 (mod 3); numbers k for which A156552(2*k) is a multiple of 3.

Original entry on oeis.org

2, 5, 8, 11, 15, 17, 18, 20, 23, 31, 32, 33, 41, 42, 44, 45, 47, 50, 51, 59, 60, 67, 68, 69, 72, 73, 77, 78, 80, 83, 92, 93, 97, 98, 99, 103, 109, 110, 114, 119, 123, 124, 125, 127, 128, 132, 135, 137, 141, 149, 153, 157, 161, 162, 164, 167, 168, 170, 174, 176, 177, 179, 180, 182, 188, 191, 197, 200, 201, 204, 207, 210, 211, 217, 219, 221, 222
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Comments

Even terms of A329609, divided by two.
Numbers k for which A156552(k) == 1 (mod 3). - Antti Karttunen, Feb 27 2020

Crossrefs

Sequence A329603 sorted into ascending order.
Positions of 1's in A329903 and in A332814.
Cf. A001105 (subsequence apart from the initial 0).
Cf. A031368 (a subsequence of prime terms).
Cf. also A332812, A324814, A332821.

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    isA329604(n) = !(A156552(2*n)%3);

Extensions

New primary definition added by Antti Karttunen, Mar 01 2020

A350838 Heinz numbers of partitions with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jan 18 2022

Keywords

Comments

Differs from A320340 in having 105: (4,3,2), 315: (4,3,2,2), 455: (6,4,3), etc.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with no adjacent prime indices of quotient 1/2.

Examples

			The terms and their prime indices begin:
      1: {}            19: {8}             38: {1,8}
      2: {1}           20: {1,1,3}         39: {2,6}
      3: {2}           22: {1,5}           40: {1,1,1,3}
      4: {1,1}         23: {9}             41: {13}
      5: {3}           25: {3,3}           43: {14}
      7: {4}           26: {1,6}           44: {1,1,5}
      8: {1,1,1}       27: {2,2,2}         45: {2,2,3}
      9: {2,2}         28: {1,1,4}         46: {1,9}
     10: {1,3}         29: {10}            47: {15}
     11: {5}           31: {11}            49: {4,4}
     13: {6}           32: {1,1,1,1,1}     50: {1,3,3}
     14: {1,4}         33: {2,5}           51: {2,7}
     15: {2,3}         34: {1,7}           52: {1,1,6}
     16: {1,1,1,1}     35: {3,4}           53: {16}
     17: {7}           37: {12}            55: {3,5}
		

Crossrefs

The version with quotients >= 2 is counted by A000929, sets A018819.
<= 2 is A342191, counted by A342094.
< 2 is counted by A342096, sets A045690.
> 2 is counted by A342098, sets A040039.
The sets version (subsets of prescribed maximum) is counted by A045691.
These partitions are counted by A350837.
The strict case is counted by A350840.
For differences instead of quotients we have A350842, strict A350844.
The complement is A350845, counted by A350846.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A003114 = strict partitions with no successions, ranked by A325160.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],And@@Table[FreeQ[Divide@@@Partition[primeptn[#],2,1],2],{i,2,PrimeOmega[#]}]&]

A007607 Skip 1, take 2, skip 3, etc.

Original entry on oeis.org

2, 3, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 29, 30, 31, 32, 33, 34, 35, 36, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130
Offset: 1

Views

Author

Keywords

Comments

Numbers k with the property that the smallest Dyck path of the symmetric representation of sigma(k) has a central peak. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
Union of A317303 and A014105. - Omar E. Pol, Aug 29 2018

Examples

			From _Omar E. Pol_, Aug 29 2018: (Start)
Written as an irregular triangle in which the row lengths are the nonzero even numbers the sequence begins:
    2,   3;
    7,   8,   9,  10;
   16,  17,  18,  19,  20,  21;
   29,  30,  31,  32,  33,  34,  35,  36;
   46,  47,  48,  49,  50,  51,  52,  53,  54,  55;
   67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77,  78;
   92,  93,  94,  95,  96,  97,  98,  99, 100, 101, 102, 103, 104, 105;
  121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136;
...
Row sums give the nonzero terms of A317297.
Column 1 gives A130883, n >= 1.
Right border gives A014105, n >= 1.
(End)
		

References

  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 177.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007606.
Similar to A360418.

Programs

  • Haskell
    a007607 n = a007607_list !! (n-1)
    a007607_list = skipTake 1 [1..] where
       skipTake k xs = take (k + 1) (drop k xs)
                       ++ skipTake (k + 2) (drop (2*k + 1) xs)
    -- Reinhard Zumkeller, Feb 12 2011
    
  • Haskell
    a007607_list' = f $ tail $ scanl (+) 0 [1..] where
       f (t:t':t'':ts) = [t+1..t'] ++ f (t'':ts)
    -- Reinhard Zumkeller, Feb 12 2011
  • Mathematica
    Flatten[ Table[i, {j, 2, 16, 2}, {i, j(j - 1)/2 + 1, j(j + 1)/2}]] (* Robert G. Wilson v, Mar 11 2004 *)
    With[{t=20},Flatten[Take[TakeList[Range[(t(t+1))/2],Range[t]],{2,-1,2}]]] (* Harvey P. Dale, Sep 26 2021 *)
  • PARI
    for(m=0,10,for(n=2*m^2+3*m+2,2*m^2+5*m+3,print1(n", "))) \\ Charles R Greathouse IV, Feb 12 2011
    

Formula

G.f.: 1/(1-x) * (1/(1-x) + x*Sum_{k>=1} (2k+1)*x^(k*(k+1))). - Ralf Stephan, Mar 03 2004
a(A000290(n)) = A001105(n). - Reinhard Zumkeller, Feb 12 2011
A057211(a(n)) = 0. - Reinhard Zumkeller, Dec 30 2011
a(n) = floor(sqrt(n) + 1/2)^2 + n = A053187(n) + n. - Ridouane Oudra, May 04 2019

A067051 The smallest k>1 such that k divides sigma(k*n) is equal to 3.

Original entry on oeis.org

2, 8, 18, 32, 49, 50, 72, 98, 128, 162, 169, 196, 200, 242, 288, 338, 361, 392, 441, 450, 512, 578, 648, 676, 722, 784, 800, 882, 961, 968, 1058, 1152, 1225, 1250, 1352, 1369, 1444, 1458, 1521, 1568, 1682, 1764, 1800, 1849, 1922, 2048, 2178, 2312, 2450, 2592
Offset: 1

Views

Author

Benoit Cloitre, Jul 26 2002

Keywords

Comments

The smallest m>1 such that m divides sigma(m*n) is 2, 3 or 6.
Appears to be the same sequence as A074629. - Ralf Stephan, Aug 18 2004. [Proof: Mathar link]
Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - Michel Marcus, Dec 26 2013

Crossrefs

Subsequence of A087943.

Programs

  • Magma
    [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
  • Mathematica
    Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
  • PARI
    isok(n) = (sigma(2*n) % 2) && !(sigma(3*n) % 3); \\ Michel Marcus, Dec 26 2013
    

Formula

{n: A000203(n) mod 6 = 3.} (Old definition of A074629) - Labos Elemer, Aug 26 2002
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015
{n: A049605(n) = 3}. - R. J. Mathar, May 19 2020
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020
A087943 INTERSECT A028982. - R. J. Mathar, May 30 2020
Previous Showing 71-80 of 235 results. Next