A000920
Differences of 0: 6!*Stirling2(n,6).
Original entry on oeis.org
0, 0, 0, 0, 0, 720, 15120, 191520, 1905120, 16435440, 129230640, 953029440, 6711344640, 45674188560, 302899156560, 1969147121760, 12604139926560, 79694820748080, 499018753280880, 3100376804676480, 19141689213218880, 117579844328562000
Offset: 1
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Leipzig, 1911.
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
- Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
-
[6^n-Binomial(6,5)*5^n+Binomial(6,4)*4^n-Binomial(6,3)*3^n+Binomial(6,2)*2^n-Binomial(6,1): n in [1..30]]; // Vincenzo Librandi, May 18 2015
-
720/(-1+z)/(6*z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1);
-
CoefficientList[Series[(720*x^5)/((x-1)*(6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)),{x,0,30}],x] (* Vincenzo Librandi, Apr 11 2012 *)
k=6; Table[k!StirlingS2[n,k],{n,1,30}] (* Robert A. Russell, Sep 25 2018 *)
-
a(n) = 6!*stirling(n, 6, 2); \\ Altug Alkan, Sep 25 2018
A000498
Eulerian numbers (Euler's triangle: column k=4 of A008292, column k=3 of A173018).
Original entry on oeis.org
1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450, 198410786, 848090912, 3572085255, 14875399450, 61403313100, 251732291184, 1026509354985, 4168403181210, 16871482830550, 68111623139600, 274419271461131, 1103881308184906, 4434992805213952
Offset: 4
There is one permutation of 4 with exactly 3 descents (4321).
There are 26 permutations of 5 with 3 descents: 15432, 21543, 25431, 31542, 32154, 32541, 35421, 41532, 42153, 42531, 43152, 43215, 43251, 43521, 45321, 51432, 52143, 52431, 53142, 53214, 53241, 53421, 54132, 54213, 54231, 54312. - Neven Juric, Jan 21 2010.
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 4..200
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- F. N. Castro, O. E. González, and L. A. Medina, The p-adic valuation of Eulerian numbers: trees and Bernoulli numbers, 2014.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971
- Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers, Josai Mathematical Monographs, vol. 8, p 85-95, 2015.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Eulerian Number
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (20,-175,882,-2835,6072,-8777,8458,-5204,1848,-288).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974).)
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).)
-
[(6*4^n -6*(n+1)*3^n +3*n*(n+1)*2^n -(n-1)*n*(n+1))/6: n in [4..50]]; // G. C. Greubel, Oct 23 2017
-
[EulerianNumber(n,3): n in [4..50]]; // G. C. Greubel, Dec 07 2024
-
A000498:=proc(n); 4^n-(n+1)*3^n+1/2*(n)*(n+1)*2^n-1/6*(n-1)*(n)*(n+1); end:
-
LinearRecurrence[{20, -175, 882, -2835, 6072, -8777, 8458, -5204, 1848, -288}, {1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450}, 30] (* Jean-François Alcover, Feb 09 2016 *)
Table[Sum[(-1)^k*Binomial[n+1,k]*(4-k)^n, {k,0,3}], {n,4,50}] (* G. C. Greubel, Oct 23 2017 *)
-
for(n=4,50, print1((6*4^n -6*(n+1)*3^n +3*n*(n+1)*2^n -(n-1)*n*(n+ 1))/6, ", ")) \\ G. C. Greubel, Oct 23 2017
-
from sage.combinat.combinat import eulerian_number
print([eulerian_number(n,3) for n in range(4,61)]) # G. C. Greubel, Dec 07 2024
A056454
Number of palindromes of length n using exactly three different symbols.
Original entry on oeis.org
0, 0, 0, 0, 6, 6, 36, 36, 150, 150, 540, 540, 1806, 1806, 5796, 5796, 18150, 18150, 55980, 55980, 171006, 171006, 519156, 519156, 1569750, 1569750, 4733820, 4733820, 14250606, 14250606, 42850116, 42850116, 128746950, 128746950, 386634060, 386634060, 1160688606
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
-
[StirlingSecond((n+1) div 2, 3)*Factorial(3): n in [1..40]]; // Vincenzo Librandi, Sep 26 2018
-
A056454:= n-> 3!*Stirling2(floor((n+1)/2),3); # (C. Ronaldo)
-
LinearRecurrence[{1,5,-5,-6,6},{0,0,0,0,6},40] (* Harvey P. Dale, Sep 02 2016 *)
k=3; Table[k! StirlingS2[Ceiling[n/2],k],{n,1,30}] (* Robert A. Russell, Sep 25 2018 *)
-
a(n) = 3!*stirling((n+1)\2, 3, 2); \\ Altug Alkan, Sep 25 2018
A135456
Number of surjections from an n-element set onto a seven-element set.
Original entry on oeis.org
5040, 141120, 2328480, 29635200, 322494480, 3162075840, 28805736960, 248619571200, 2060056318320, 16540688324160, 129568848121440, 995210916336000, 7524340159588560, 56163512390086080, 414847224363337920
Offset: 7
-
LinearRecurrence[{28, -322, 1960, -6769, 13132, -13068, 5040}, {5040, 141120, 2328480, 29635200, 322494480, 3162075840, 28805736960}, 25] (* G. C. Greubel, Oct 14 2016 *)
A056310
Number of reversible strings with n beads using exactly three different colors.
Original entry on oeis.org
0, 0, 3, 18, 78, 273, 921, 2916, 9150, 28065, 85773, 259848, 785778, 2367813, 7128201, 21427956, 64382550, 193326105, 580372293, 1741847328, 5227116378, 15684323853, 47059266081, 141189861996
Offset: 1
For n=3, the three rows are ABC, ACB, and BAC, being respectively equivalent to CBA, BCA, and CAB, with which they form chiral pairs. - _Robert A. Russell_, Sep 25 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
seq(coeff(series(-3*x^3*(12*x^4-5*x^3-4*x^2+1)/((x-1)*(2*x-1)*(3*x-1)*(2*x^2-1)*(3*x^2-1)),x,n+1), x, n), n = 1..25); # Muniru A Asiru, Sep 27 2018
-
k=3; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,k,30}] (* Robert A. Russell, Nov 25 2017 *)
LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 3, 18, 78, 273, 921}, 40] (* Vincenzo Librandi, Sep 27 2018 *)
A133068
Number of surjections from an n-element set to an eight-element set.
Original entry on oeis.org
40320, 1451520, 30240000, 479001600, 6411968640, 76592355840, 843184742400, 8734434508800, 86355926616960, 823172919528960, 7621934141203200, 68937160460313600, 611692004959217280, 5342844138794426880, 46061530905262118400, 392795626402384128000
Offset: 8
- G. C. Greubel, Table of n, a(n) for n = 8..1000
- Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320).
-
[&+[(-1)^(8-k)*Binomial(8, k)*k^n: k in [1..n]]: n in [8..25]]; // Vincenzo Librandi, Oct 21 2017
-
CoefficientList[Series[40320*x^8/((x - 1)*(2*x - 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(6*x - 1)*(7*x - 1)*(8*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *)
Table[Sum[(-1)^(8 - k)*Binomial[8, k]*k^n, {k, 1, 8}], {n, 8, 20}] (* G. C. Greubel, Oct 21 2017 *)
-
x='x+O('x^50); Vec(40320*x^8/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1))) \\ G. C. Greubel, Oct 20 2017
A133132
Number of surjections from an n-element set to a ten-element set.
Original entry on oeis.org
3628800, 199584000, 6187104000, 142702560000, 2731586457600, 45950224320000, 703098107712000, 10009442963520000, 134672620008326400, 1732015476199008000, 21473732319740064000, 258323865658578720000
Offset: 10
- Vincenzo Librandi, Table of n, a(n) for n = 10..1000
- Index entries for linear recurrences with constant coefficients, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).
-
[10^n-10*9^n+45*8^n-120*7^n+210*6^n-252*5^n+210*4^n-120*3^n+45*2^n-10: n in [10..30]]; // Vincenzo Librandi, Apr 11 2012
-
With[{nn=30},Drop[CoefficientList[Series[(Exp[x]-1)^10,{x,0,nn}],x] Range[0,nn]!,10]] (* Harvey P. Dale, Sep 01 2016 *)
-
sum(k=1,10,(-1)^(10-k)*binomial(10,k)*k^n)
A133360
Number of surjections from an n-element set to a nine-element set.
Original entry on oeis.org
362880, 16329600, 419126400, 8083152000, 130456085760, 1863435974400, 24359586451200, 297846188640000, 3457819037312640, 38528927611574400, 415357755774998400, 4358654246117808000, 44733116259693227520
Offset: 9
A052761
a(n) = 3!*n*S(n-1,3), where S denotes the Stirling numbers of second kind.
Original entry on oeis.org
0, 0, 0, 0, 24, 180, 900, 3780, 14448, 52164, 181500, 615780, 2052072, 6749028, 21976500, 71007300, 228009696, 728451972, 2317445100, 7346047140, 23213772120, 73156412196, 229989358500, 721474964100, 2258832312144, 7059480120900, 22026886599900
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Set(Z,1 <= card),S=Prod(B,B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Join[{0},Table[3!*n*StirlingS2[n-1,3],{n,30}]] (* Harvey P. Dale, Feb 07 2015 *)
-
a(n)={if(n>=1, 3!*n*stirling(n-1, 3, 2), 0)} \\ Andrew Howroyd, Aug 08 2020
Better description from Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 19 2001
A305623
Number of chiral pairs of rows of n colors with exactly 3 different colors.
Original entry on oeis.org
0, 0, 3, 18, 72, 267, 885, 2880, 9000, 27915, 85233, 259308, 783972, 2366007, 7122405, 21422160, 64364400, 193307955, 580316313, 1741791348, 5226945372, 15684152847, 47058746925, 141189342840, 423593188200, 1270831465995, 3812595048993, 11437991207388, 34314376250772, 102943948309287, 308833455491445, 926503630549920, 2779517334002400, 8338565015656035, 25015720816575273, 75047214375967428
Offset: 1
For a(3) = 3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
A056454(n) is number of achiral rows of n colors with exactly 3 different colors.
-
k=3; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
-
a(n) = 3*(stirling(n,3,2)-stirling(ceil(n/2),3,2)); \\ Altug Alkan, Sep 26 2018
Comments