cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A000920 Differences of 0: 6!*Stirling2(n,6).

Original entry on oeis.org

0, 0, 0, 0, 0, 720, 15120, 191520, 1905120, 16435440, 129230640, 953029440, 6711344640, 45674188560, 302899156560, 1969147121760, 12604139926560, 79694820748080, 499018753280880, 3100376804676480, 19141689213218880, 117579844328562000
Offset: 1

Views

Author

Keywords

Comments

Number of surjections from an n-element set onto a six-element set, with n >= 6. - Mohamed Bouhamida, Dec 15 2007
Number of rows of n colors using exactly six colors. For n=6, the 720 rows are the 720 permutations of ABCDEF. - Robert A. Russell, Sep 25 2018

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
  • A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.

Crossrefs

Programs

  • Magma
    [6^n-Binomial(6,5)*5^n+Binomial(6,4)*4^n-Binomial(6,3)*3^n+Binomial(6,2)*2^n-Binomial(6,1): n in [1..30]]; // Vincenzo Librandi, May 18 2015
    
  • Maple
    720/(-1+z)/(6*z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1);
  • Mathematica
    CoefficientList[Series[(720*x^5)/((x-1)*(6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)),{x,0,30}],x] (* Vincenzo Librandi, Apr 11 2012 *)
    k=6; Table[k!StirlingS2[n,k],{n,1,30}] (* Robert A. Russell, Sep 25 2018 *)
  • PARI
    a(n) = 6!*stirling(n, 6, 2); \\ Altug Alkan, Sep 25 2018

Formula

a(n) = Sum((-1)^i*binomial(6, i)*(6-i)^n, i = 0 .. 5).
a(n) = 6^n-C(6,5)*5^n+C(6,4)*4^n-C(6,3)*3^n+C(6,2)*2^n-C(6,1) with n>=6. - Mohamed Bouhamida, Dec 15 2007
G.f.: 720*x^6/((x-1)*(6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
a(n) = 720*A000770(n). - R. J. Mathar, Apr 30 2015
E.g.f.: (exp(x) - 1)^6. - Geoffrey Critzer, May 17 2015

A000498 Eulerian numbers (Euler's triangle: column k=4 of A008292, column k=3 of A173018).

Original entry on oeis.org

1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450, 198410786, 848090912, 3572085255, 14875399450, 61403313100, 251732291184, 1026509354985, 4168403181210, 16871482830550, 68111623139600, 274419271461131, 1103881308184906, 4434992805213952
Offset: 4

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0.(Graham et al.)
Number of permutations of n letters with exactly 3 descents.

Examples

			There is one permutation of 4 with exactly 3 descents (4321).
There are 26 permutations of 5 with 3 descents: 15432, 21543, 25431, 31542, 32154, 32541, 35421, 41532, 42153, 42531, 43152, 43215, 43251, 43521, 45321, 51432, 52143, 52431, 53142, 53214, 53241, 53421, 54132, 54213, 54231, 54312. - Neven Juric, Jan 21 2010.
		

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974).)
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).)
Cf. A066912.

Programs

  • Magma
    [(6*4^n -6*(n+1)*3^n +3*n*(n+1)*2^n -(n-1)*n*(n+1))/6: n in [4..50]]; // G. C. Greubel, Oct 23 2017
    
  • Magma
    [EulerianNumber(n,3): n in [4..50]]; // G. C. Greubel, Dec 07 2024
    
  • Maple
    A000498:=proc(n); 4^n-(n+1)*3^n+1/2*(n)*(n+1)*2^n-1/6*(n-1)*(n)*(n+1); end:
  • Mathematica
    LinearRecurrence[{20, -175, 882, -2835, 6072, -8777, 8458, -5204, 1848, -288}, {1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450}, 30] (* Jean-François Alcover, Feb 09 2016 *)
    Table[Sum[(-1)^k*Binomial[n+1,k]*(4-k)^n, {k,0,3}], {n,4,50}] (* G. C. Greubel, Oct 23 2017 *)
  • PARI
    for(n=4,50, print1((6*4^n -6*(n+1)*3^n +3*n*(n+1)*2^n -(n-1)*n*(n+ 1))/6, ", ")) \\ G. C. Greubel, Oct 23 2017
    
  • SageMath
    from sage.combinat.combinat import eulerian_number
    print([eulerian_number(n,3) for n in range(4,61)]) # G. C. Greubel, Dec 07 2024

Formula

From Mike Zabrocki, Nov 12 2004: (Start)
G.f.: x^4*(1 + 6*x - 43*x^2 + 44*x^3 + 52*x^4 - 72*x^5)/((1-x)^4 * (1-2*x)^3 * (1-3*x)^2 * (1-4*x)).
a(n) = (6*4^n - 6*(n + 1)*3^n + 3*(n)*(n + 1)*2^n - (n - 1)*(n)*(n + 1))/6. (End)
If n>3 is prime, then a(n) == 1 (mod n). A generalization: if a_t(n) denote the number of permutations of n letters with exactly t descents (column t+1 of Euler's triangle A008292), then, for prime n>t, we have a(n) == 1 (mod n). - Vladimir Shevelev, Sep 26 2010
E.g.f.: exp(x)*(exp(3*x) - (1 + 3*x)*exp(2*x) + 2*(x + 2*x^2/2!)*exp(x) - x^2/2! - x^3/3!). - Wolfdieter Lang, Apr 17 2017

Extensions

More terms from Christian G. Bower, May 12 2000

A056454 Number of palindromes of length n using exactly three different symbols.

Original entry on oeis.org

0, 0, 0, 0, 6, 6, 36, 36, 150, 150, 540, 540, 1806, 1806, 5796, 5796, 18150, 18150, 55980, 55980, 171006, 171006, 519156, 519156, 1569750, 1569750, 4733820, 4733820, 14250606, 14250606, 42850116, 42850116, 128746950, 128746950, 386634060, 386634060, 1160688606
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

Crossrefs

Programs

  • Magma
    [StirlingSecond((n+1) div 2, 3)*Factorial(3): n in [1..40]]; // Vincenzo Librandi, Sep 26 2018
  • Maple
    A056454:= n-> 3!*Stirling2(floor((n+1)/2),3); # (C. Ronaldo)
  • Mathematica
    LinearRecurrence[{1,5,-5,-6,6},{0,0,0,0,6},40] (* Harvey P. Dale, Sep 02 2016 *)
    k=3; Table[k! StirlingS2[Ceiling[n/2],k],{n,1,30}] (* Robert A. Russell, Sep 25 2018 *)
  • PARI
    a(n) = 3!*stirling((n+1)\2, 3, 2); \\ Altug Alkan, Sep 25 2018
    

Formula

a(n) = 3! * Stirling2( [(n+1)/2], 3).
G.f.: 6*x^5/((1-x)*(1-2*x^2)*(1-3*x^2)). - Colin Barker, May 05 2012
G.f.: k!(x^(2k-1)+x^(2k))/Product_{i=1..k}(1-i*x^2), where k=3 is the number of symbols. - Robert A. Russell, Sep 25 2018

A135456 Number of surjections from an n-element set onto a seven-element set.

Original entry on oeis.org

5040, 141120, 2328480, 29635200, 322494480, 3162075840, 28805736960, 248619571200, 2060056318320, 16540688324160, 129568848121440, 995210916336000, 7524340159588560, 56163512390086080, 414847224363337920
Offset: 7

Views

Author

Mohamed Bouhamida, Dec 15 2007

Keywords

Crossrefs

Column k=7 of A019538 and A131689.

Programs

  • Mathematica
    LinearRecurrence[{28, -322, 1960, -6769, 13132, -13068, 5040}, {5040, 141120, 2328480, 29635200, 322494480, 3162075840, 28805736960}, 25] (* G. C. Greubel, Oct 14 2016 *)

Formula

a(n) = 7^n -C(7,6)*6^n +C(7,5)*5^n -C(7,4)*4^n +C(7,3)*3^n -C(7,2)*2^n +C(7,1) with n>=7.
a(n) = A000771(n) * 7!. - Max Alekseyev, Nov 12 2009
G.f.: -5040*x^7/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)). - Colin Barker, Oct 25 2012
E.g.f.: (exp(x) - 1)^7. - Ilya Gutkovskiy, Jun 19 2018

Extensions

More terms from Max Alekseyev, Nov 12 2009

A056310 Number of reversible strings with n beads using exactly three different colors.

Original entry on oeis.org

0, 0, 3, 18, 78, 273, 921, 2916, 9150, 28065, 85773, 259848, 785778, 2367813, 7128201, 21427956, 64382550, 193326105, 580372293, 1741847328, 5227116378, 15684323853, 47059266081, 141189861996
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			For n=3, the three rows are ABC, ACB, and BAC, being respectively equivalent to CBA, BCA, and CAB, with which they form chiral pairs. - _Robert A. Russell_, Sep 25 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A305621.
Equals (A001117 + A056454) / 2 = A001117 - A305623 = A305623 + A056454.

Programs

  • Maple
    seq(coeff(series(-3*x^3*(12*x^4-5*x^3-4*x^2+1)/((x-1)*(2*x-1)*(3*x-1)*(2*x^2-1)*(3*x^2-1)),x,n+1), x, n), n = 1..25); # Muniru A Asiru, Sep 27 2018
  • Mathematica
    k=3; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,k,30}] (* Robert A. Russell, Nov 25 2017 *)
    LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 3, 18, 78, 273, 921}, 40] (* Vincenzo Librandi, Sep 27 2018 *)

Formula

a(n) = A032120(n) - 3*A005418(n+1) + 3.
G.f.: -3*x^3*(12*x^4 - 5*x^3 - 4*x^2 + 1)/((x - 1)*(2*x - 1)*(3*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)). [Colin Barker, Jul 07 2012]

A133068 Number of surjections from an n-element set to an eight-element set.

Original entry on oeis.org

40320, 1451520, 30240000, 479001600, 6411968640, 76592355840, 843184742400, 8734434508800, 86355926616960, 823172919528960, 7621934141203200, 68937160460313600, 611692004959217280, 5342844138794426880, 46061530905262118400, 392795626402384128000
Offset: 8

Views

Author

Mohamed Bouhamida, Dec 16 2007

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-1)^(8-k)*Binomial(8, k)*k^n: k in [1..n]]: n in [8..25]]; // Vincenzo Librandi, Oct 21 2017
  • Mathematica
    CoefficientList[Series[40320*x^8/((x - 1)*(2*x - 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(6*x - 1)*(7*x - 1)*(8*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *)
    Table[Sum[(-1)^(8 - k)*Binomial[8, k]*k^n, {k, 1, 8}], {n, 8, 20}] (* G. C. Greubel, Oct 21 2017 *)
  • PARI
    x='x+O('x^50); Vec(40320*x^8/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1))) \\ G. C. Greubel, Oct 20 2017
    

Formula

a(n) = Sum_{k=1..8} ((-1)^(8-k)*binomial(8,k)*k^n).
a(n) = A049434(n) * 8!. - Max Alekseyev, Nov 13 2009
G.f.: 40320*x^8/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)). - Colin Barker, Oct 25 2012
E.g.f.: (exp(x) - 1)^8. - Ilya Gutkovskiy, Jun 19 2018

Extensions

Edited by N. J. A. Sloane, Jul 12 2008 at the suggestion of R. J. Mathar
More terms from Max Alekseyev, Nov 13 2009

A133132 Number of surjections from an n-element set to a ten-element set.

Original entry on oeis.org

3628800, 199584000, 6187104000, 142702560000, 2731586457600, 45950224320000, 703098107712000, 10009442963520000, 134672620008326400, 1732015476199008000, 21473732319740064000, 258323865658578720000
Offset: 10

Views

Author

Mohamed Bouhamida, Dec 16 2007

Keywords

Crossrefs

Programs

  • Magma
    [10^n-10*9^n+45*8^n-120*7^n+210*6^n-252*5^n+210*4^n-120*3^n+45*2^n-10: n in [10..30]]; // Vincenzo Librandi, Apr 11 2012
  • Mathematica
    With[{nn=30},Drop[CoefficientList[Series[(Exp[x]-1)^10,{x,0,nn}],x] Range[0,nn]!,10]] (* Harvey P. Dale, Sep 01 2016 *)
  • PARI
    sum(k=1,10,(-1)^(10-k)*binomial(10,k)*k^n)
    

Formula

a(n) = 10^n-10*9^n+45*8^n-120*7^n+210*6^n-252*5^n+210*4^n-120*3^n+45*2^n-10.
a(n) = A049435(n) * 10!. - Max Alekseyev, Nov 13 2009
G.f.: 3628800*x^10/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)). - Colin Barker, Oct 25 2012
E.g.f.: (exp(x)-1)^10. - Alois P. Heinz, May 17 2016

Extensions

More terms from Max Alekseyev, Nov 13 2009
Formula corrected by Charles R Greathouse IV, Mar 07 2010

A133360 Number of surjections from an n-element set to a nine-element set.

Original entry on oeis.org

362880, 16329600, 419126400, 8083152000, 130456085760, 1863435974400, 24359586451200, 297846188640000, 3457819037312640, 38528927611574400, 415357755774998400, 4358654246117808000, 44733116259693227520
Offset: 9

Views

Author

Mohamed Bouhamida, Dec 21 2007

Keywords

Crossrefs

Formula

a(n) = Sum_{k=1..9} (-1)^(9-k)*binomial(9,k)*k^n.
a(n) = A049447(n) * 9!. - Max Alekseyev, Nov 12 2009
G.f.: -362880*x^9/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)). - Colin Barker, Oct 25 2012
E.g.f.: (exp(x) - 1)^9. - Ilya Gutkovskiy, Jun 19 2018

Extensions

More terms from Max Alekseyev, Nov 12 2009

A052761 a(n) = 3!*n*S(n-1,3), where S denotes the Stirling numbers of second kind.

Original entry on oeis.org

0, 0, 0, 0, 24, 180, 900, 3780, 14448, 52164, 181500, 615780, 2052072, 6749028, 21976500, 71007300, 228009696, 728451972, 2317445100, 7346047140, 23213772120, 73156412196, 229989358500, 721474964100, 2258832312144, 7059480120900, 22026886599900
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{B=Set(Z,1 <= card),S=Prod(B,B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{0},Table[3!*n*StirlingS2[n-1,3],{n,30}]] (* Harvey P. Dale, Feb 07 2015 *)
  • PARI
    a(n)={if(n>=1, 3!*n*stirling(n-1, 3, 2), 0)} \\ Andrew Howroyd, Aug 08 2020

Formula

E.g.f.: exp(x)^3*x - 3*exp(x)^2*x + 3*x*exp(x) - x.
Recurrence: {a(1)=0, a(2)=0, a(3)=0, a(4)=24, (-36*n^2 - 66*n - 6*n^3 - 36)*a(n) + (11*n^3 + 55*n^2 + 66*n)*a(n+1) + (-6*n^3 - 24*n^2 - 18*n)*a(n+2) + (n^3 + 3*n^2 + 2*n)*a(n+3)}
For n>=2, a(n) = n*(3^(n-1) - 3*2^(n-1) + 3). - Vaclav Kotesovec, Nov 27 2012
O.g.f.: 12*x^4*(2 - 9*x + 11*x^2 - 3*x^3)/((1 - 3*x)^2*(1 - 2*x)^2*(1 - x)^2). - Matthew House, Feb 16 2017 [Corrected by Georg Fischer, May 19 2019]
From Andrew Howroyd, Aug 08 2020: (Start)
a(n) = n*A001117(n-1) for n > 1.
E.g.f.: x*(exp(x) - 1)^3. (End)

Extensions

Better description from Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 19 2001
More terms from Harvey P. Dale, Feb 07 2015

A305623 Number of chiral pairs of rows of n colors with exactly 3 different colors.

Original entry on oeis.org

0, 0, 3, 18, 72, 267, 885, 2880, 9000, 27915, 85233, 259308, 783972, 2366007, 7122405, 21422160, 64364400, 193307955, 580316313, 1741791348, 5226945372, 15684152847, 47058746925, 141189342840, 423593188200, 1270831465995, 3812595048993, 11437991207388, 34314376250772, 102943948309287, 308833455491445, 926503630549920, 2779517334002400, 8338565015656035, 25015720816575273, 75047214375967428
Offset: 1

Views

Author

Robert A. Russell, Jun 06 2018

Keywords

Comments

If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.

Examples

			For a(3) = 3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
		

Crossrefs

Third column of A305622.
A056454(n) is number of achiral rows of n colors with exactly 3 different colors.

Programs

  • Mathematica
    k=3; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
  • PARI
    a(n) = 3*(stirling(n,3,2)-stirling(ceil(n/2),3,2)); \\ Altug Alkan, Sep 26 2018

Formula

a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=3 colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A001117(n) - A056454(n)) / 2.
a(n) = A001117(n) - A056310(n) = A056310(n) - A056454(n).
G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=3 colors used.
G.f.: 3*x^3*(5*x^2-x-1)/(-36*x^6+30*x^5+24*x^4-25*x^3-x^2+5*x-1). - Simon Plouffe, Jun 20 2018
Previous Showing 11-20 of 26 results. Next